Class: T.E (I.T.)

UNIT 1- FINITE STATE MACHINES

- 1. Define the following terms with suitable example of each:
 - a. Symbol
 - b. Alphabet
 - c. String or Word
 - d. Proper prefix of a string
 - e. Suffix of astring
- 2. Define and explain with suitable example:
 - a. Natural Language
 - b. Formal Language
- 3. What is the basic machine? Enlist the important features of basic machine.
- 4. State and define Finite State Machine(FSM).
- 5. How are FSMs represented?
- 6. Define string acceptance and rejection by FSM.
- 7. What are the properties and limitations of Finite State Machine?
- 8. Define NFA and DFA in the tuple format.
- 9. What is the basic difference between NFA and DFA?
- 10. Give formal definitions of NFA with ϵ -moves and ϵ -closure.
- 11. Prove that two FA's are identical. Write the expressions for the same.
- 12. Enlist the applications and limitations of FA.
- 13. How is FSM different from NFA and DFA.
- 14. Design a FSM
 - i) for divisibility by 3 tester of a binary number.
 - ii) for divisibility by 5 tester of a decimal number.

- iii) for divisibility tester of unary number by 2.
- 15. Design a FSM to accept those strings having 101 or 110 as a substring over ∑ = {0,1}.

 Class: T.E (I.T.)
- 16. Design FA which accepts only those strings which 'starts with 1' and 'ends with 0' over $\sum = \{0,1\}$.
- 17. Design FA which accepts only those strings which always ends with "aa" over $\sum = \{a,b\}$.
- 18. Design an FA over $\Sigma = \{0,1\}$ for the following
 - i) Strings which end in either "00" or "11".
 - ii) Strings which contain either "01" or "110".
 - iii) Strings with even number of 0's and odd number of 1's.
 - iv) Strings with even number of 0's and even number of 1's
- 19. Design a FA that reads strings defined over $\sum = \{a,b\}$ and accept only those strings which ends up in either "aa" or "bb".
- 20. Construct a FSM that reads strings made up of letters in word "CHARIOT" and recognize those string that contain "CAT" as a substring.
- 21. Construct a NFA that accepts the set of all strings over {a, b} ending in aba.
- 22. Construct NFA which accepts the strings containing either '01' or '10' over the alphabet {0,1}.
- 23. Construct NFA in which double '1' is followed by double '0' over the alphabet {0,1}.
- 24. Design a DFA which accepts the odd number of 1's and any number of 0's over {0,1}.
- 25. Construct DFA accepting following language over {0,1}
 - i) Set of all strings ending with 00
 - ii) Set of all strings such that 3rd symbol from right end is 1.
- 26. Design a DFA for accepting all those strings over {0,1} which is not containing 101 as a substring.
- 27. Consider the following NFA with ε moves :

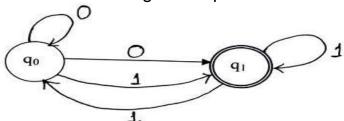
	3	а	В	С
р	Ф	{p}	{q}	{r}

q	{p}	{q}	{r}	Ф
r	{q}	{r}	Ф	{p}

Class: T.E (I.T.)

- i. Compute the ε closure of each state.
- ii. Give all the strings of length three or less accepted by the automaton.
- iii. Convert the automaton to its equivalent DFA.
- 28. Construct DFA equivalent to NFAM= $(\{p,q,r,s\},\{0,1\},\delta,p,\{q,s\})$

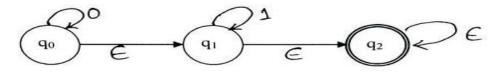
Where,


		0	1
<u> </u>	р	{q, s}	{q}
δ =	q	{r}	{q, r}
	r	{s} Φ	{p}
	s*	Ф	{P}

29. Construct DFA equivalent to NFA $M=(\{p,q,r,s\},\{0,1\},\delta,p,\{s\})$

Where,

		0	1
δ =	р	{p, q}	{p}
0 –	q	{r }	{r}
	r	{s} {s}	Ф
	s*	{s}	{s}


30. Show stepwise process of constructing DFA equivalent to the following NFA:

- 31. Construct NFA for the following regular expressions:
 - i) 0*1*2*

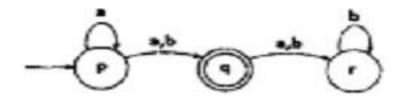
ii)
$$(00 + 1)^* (10)^*$$

32. Convert the following NFA with E-moves to its equivalent NFA without E-moves.

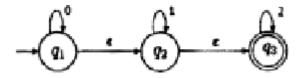
33. Design a DFA for following language:

L={w | w is Binary word of length 4i (where I >= 1) such that each consecutive

block of 4 bits contains atleast 20's }.

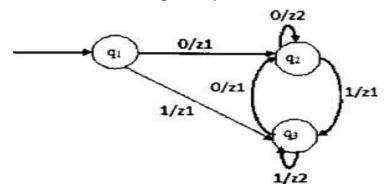

Class: T.E (I.T.)

34. Convert the following NFA into equivalent DFA

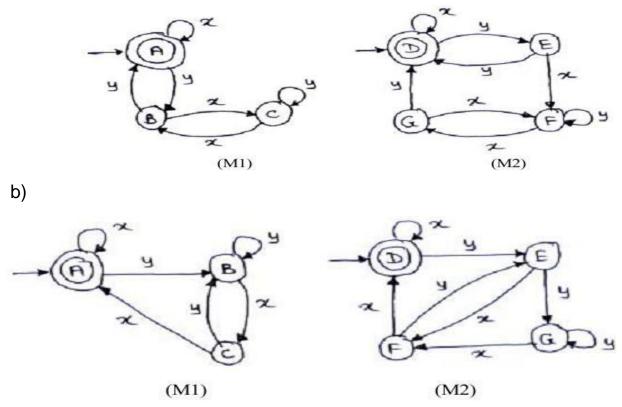

$$M = (\{q_0, q_1\}, \{ 0, 1\}, \delta, q_0, \{ q_1\})$$
 where δ is :

$$\begin{split} & \delta(q_0\,,\!0) = \{q_0,\,q_1\}\,, & \delta(q_0\,,\!1) = \{q_1\}, \\ & \delta(q_1\,,\!0) = \Phi\,\,, & \delta(q_1\,,\!1) = \{q_0,\,q_1\} \end{split}$$

35. Convert the following NFA to its equivalent DFA



36. Convert the following with € moves to its equivalent DFA


- 37. Construct the NFA for the language of all strings that begin and end with same symbol over the alphabet $\Sigma = \{0, 1\}$.
- 38. Define Moore and Mealy machines in tuple format?
- 39. Compare Moore and Mealy machines with suitable example.

- 40. Design a Moore machine which will recognize the language of all words of the form (a+b)* aa (a+b)*. Let the machine display "A" for acceptance and "R" for rejection of words.
- 41. Design a Moore machine for checking divisibility by 3 of a given binary number (residue of 3).
- 42. Design a Moore machine to generate 1's compliment of the given binary number.
- 43. Design a Moore machine to generate 2's compliment of the given binary number.
- 44. Design a Mealy machine to generate 2's compliment of the given binary number.
- 45. Design a Moore and Mealy machine for binary input sequence such that if it has a substring 110 the machine outputs A, if it has a substring 101 machine outputs B, otherwise it outputs C.
- 46. the alphabet $\sum = \{0, 1\}$.
- 47. Design Moore and Mealy machine to convert substring 121 to 212 for strings of language having input from {0,1,2}.
- 48. Design a Moore machine which counts the occurrence of substring aab in a long i/p string over {a,b}.
- 49. Construct Moore and Mealy machine to print no of vowels and consonants for a string of alphabets.
- 50. Design Mealy machine which accepts strings containing 'cat' and 'rat'.
- 51. Consider the following Mealy machine, construct a Moore machine equivalent to It.

52. Find out whether M1 and M2 are equivalent

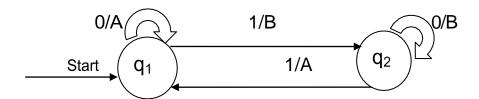
a)

53. Convert the following Moore machine to its equivalent Mealy machine.

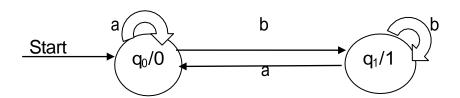
State	Input		Output	
	Α	b	Output	
q_0	q_1	q_3	1	
q_1	q_3	q ₁	0	
q_2	q_0	q ₃	0	
q_3	q_3	q_2	1	

54. Convert the following Moore machine to its equivalent Mealy machine

State	Input		Output	
State	0	1	Output	
р	S	q	0	
q	q	r	1	
r	r	S	0	


|--|

55. Convert the following Mealy machine to its equivalent Moore machine.


Present	Next State			
State	Input =0		Input =1	
State	State	Output	State	Output
q ₁	q ₁	1	q_2	0
q ₂	q ₄	1	q ₄	1
q_3	q_2	1	q_3	1
q ₄	q_3	0	q ₁	1

56. State TRUE or False?

- i) Moore machine can have arbitrary number of final states.
- ii) Moore machine can have arbitrary number of initial states.
- 57. Convert the following Mealy machine to its equivalent Moore machine.

58. Consider the following Moore machine, convert it to its equivalent Mealy machine.

