Introduction

What 1s an algorithm?
I
An algorithm IS a sequence ofi inampiguous Istructions
for solving a problem, 1., for obtaining a required

output for any Iegitimeate mnput i a finite amount of
time.

“computer”

11

1-1

i

i

i1

Algorithm

An algorithm 1S a sequence of: inambiguous
Instructions for solving a problem, I.e., for
obtaining a required output for any legitimate
Input i a finite amount of: time.

» Can be represented various forms
« Unambiguity/clearness

» Effectiveness

* Finiteness/termination

e Correctness

I'rf

1-2

Historical Perspective
r'rs

rrau
Euclid’s algorithm for finding the greatest common divisor

Muhammad ibn Musa al-Khwarizmi— 9" century
mathematician
WAL T viEginia.edu/science/parshall/khwariz. html

i

i

i1

1-3

http://www.lib.virginia.edu/science/parshall/khwariz.html

11

Notion of:algorithm and problem

{11,

algorithm

“computer”

algorithmic solution
(different from a conventional solution)

Example oficomputational problems: sorting

I'r

rrau
Statement of: problem:

Inputs A sequence ofin NUMBErS <&y, &y, ---» 2>

Qutput: A reordering of the INput SEqUENCe <a ;, @, .--» a > SO that
a;Sa; wheneveri<|

Instance: Tihe sequence <5; 3, 2, 8, 3>

Algorithms:
Selection sort
Insertion sort
Merge sort
(many others)

i

i

114

1-5

Selection Sort
I,
Input: array all], =+, aln]

Outputs array a sorted in non-decreasing order:

Algorithm:

for ;=1ton

swap al 7] with smallest of a[7], -, a[n]

* |s this unambiguous? Effective?
» See also pseudocode, section 3.1

111

1-6

i

i

i1

Some Well-known Computational Problems

Sorting

Searching

SNOKtest paths in a grapn
Minimum spanning tree
Primality testing

T'raveling salesman problem
Knapsack problem

Chess

Tiowers of Hanol

Program termination

Some of these problems don’t have efficient algorithms,
or algorithms at all!

rr

rrau

1-7

i

i

114

Basic Issues Related to Algorithms

How to design algorithms
How to express algorithms
Proving COKrectness

Efficiency (or complexity) analysis
Theoretical analysis

Empirical analysis

Optimality

I'r

Y

¥

1-8

Algorithm design strategies
g 0 0 I

Brute force Greedy approach

Divide and conguer. Dynamic programming

Decrease and conguer :
: Backtracking and branch-and-bound

Tiransform and conguer: :
Space and time tradeoffs

111

i

i

i

114

Analysis oft Algorithms

How good Is the algorithm?
(COrrectness
Tiime efficiency
Space efficiency

[Does there exist a better algorithm?
L_ower: bounds
Optimality

I'r

1-10

i

i

144

What 1s an algorithm?
T
Recipe, process, method, technique, procedure, routine,...
with the following requirements:

FINIteness
terminates after a finite number: of:steps

Definiteness

rigorously and tnambiguously specified
Clearly specified input

valid inputs are clearly specified

Clearly specified/expected output

can be proved toproduce the correct output given a valid mput

Effectiveness
steps are sutficiently simple and basic

1-11

i

i

144

Ay study algorithms?

Theoretical importance

the core oficomputer: science

Practicallimportance
A practitioner’s toolkit of known algorithms

Framework for designing and-analyzing algorithms for new
problems

rr

1-12

Euclid’s Algorithm
I'rr

rrau
Problem: Eind gecd(m,n); the greatest common divisor: ofi two
nonnegative, Not both zero integers m and n

Examples: gcd(60,24) =12, gcd(60,0) =60, gcd(0,0)= 7
Fuclid’s algorithm is based on repeated application of equality
gcd(m,n) = ged(n, m modn)

untilithe second number: becomes 0, Which makes the problem
trivial.

Example: ged(60,24) = ged(24,12) = ged(12,0) = 12

i

111

1-13

Two descriptions of Euclid’s algorithm

rr

rrau

Step L Ifin = 0; return m and stop; otherwise go to Step. 2
Step 2 Divide m by n and assign the value ofithe remainder to r

Step 3 Assign the value ofin to m and the value of rto n. Go to
Step 1.

while n=£ 0'do
7 <— m modn
nm<— ri
n<—r

Feturn m

111

i

1-14

i

i

144

Other methods for computing gcd(m,n)’"

rrau

Consecutive integer checking algorithm
Step L' Assign the value offmin{m,nj to:t

Step 2 Divide m by t. Ifithe remainder 1s 0, go to Step: 3;
otherwise, go to Step 4

Step 3 Divide n by t. Ifithe remainder is 0, Feturn t and stop;
otherwise, go to Step4

Step 4 Decrease t by 1 and go to Step 2

Is this slower than Euclid’s algorithm?
How much slower?

O(n), if n<=m, vs O(log n)

1-15

111

i

Other methods for ged(m,n) [cont.] '

rrau

Middle-school procedure

Step I Find the prime factorization ofim
Step 2 Eind the prime factorization ofin
Step 3 Find all'the common prime factors

Step 4 Compute the product ofiall'the common prime factors
and returnit as ged(m,n)

IS this an algorithm?

How efficient Is 1t?

1-16

Sieve ofi Eratosthenes
'y

Input: Integern = 2
Output: LList of primes less than or equal' to n

forp<— 2tondo Alp]< p

forp < 2tondo
ITAIp] = 0 //p hasn’t been previously eliminated from the list

J<p*p
while j=n do
Alj] < 0 //mark element as eliminated

J<J+Dp

~Example:2 S 45 6 76910 11 12 18 14" 15 16/ 17" 15° 1920

|

1-17

i

'F

i

i

144

TWo main Issues related to algorithms

How to design algorithms

How to analyze algorithmi efficiency

rr

rrau

1-18

Algorithm design techniques/strategies

Brute force

Divide and conquer:

Decrease and conguer:

[ransform and conquer:

Space and time tradeoffs

i

i

144

I
Greedy approach
Dynamic programming
I[terative iImprovement
Backtracking

Branch and bound

1-19

1

Analysis ofralgorithms

How good is the algorithm?
time efficiency
SpPace efficiency
CORNECHNESSHNORECNTIRUTISICOUNSE

[Does there exist a better algorithm?
[ower: bounds
optimality.

(11,

1-20

i

i

144

Important problem types

SOKting
searching

SErING Processing
graph problems

combinatorial problems

geometric proplems

numerical probklems

rr

1-21

Sorting (1) '

v e a
Rearrange the items of:a given list in ascending order.
INnpUt: A sequence ofin NUMBErS <a;, &, ---5 4>
Output: A reordering <a;, a,, ..., a > Of the Input sequence suchithat
ajSays <ag,
Ay sorting?
Help searching
Algorithms often use sorting as a key: subroutine.
Sorting key
A specially chosen piece offinformation used to guide sorting. E.g., sort
student records by names.
<~
<~
- m 1-22

Sorting (1) 'Y

Examples of sorting algorithms
Selection sort
Bubble sort
Insertion sort
IMerge sort
Heap sort ...

Evaluate sorting algorithm complexity: the number: ofi key Comparisons.
[\WO Properties

- A sorting algorithm is called stable 1fit preserves the relative order
ofiany two equal elements in its input.

- A sorting algorithmiis in place it it does not require extra memory,
except, possibly for a few memory: units.

i

i

114

- 1-23

11

Selection Sort

113

Algorithm SelectionSort(A[0..n-1])
/el GRS ORIS IR GIVE el AN ASEI ECU OISO
ANPUESARaRE A DS oRORGE R0 eI EIMIENTLS
/[@)uitojuits Alprziy All0,pi=1E | Se ptaeligl zisesplelipel opelse
for1 € 0ton—2do
min € i
forj €1 +1ton—1do
I Afj] < A[min]
min € |
swap Afi] and A[min]

1-24

i

i

i1

Searching

Find a given value, called a ;1N a given set.
Examples ofisearching algorithms

Sequentialsearch

Binary search ...

Input: sorted array a 1< ... <a j and key Xx;
m < (14))/2;
whilei1<jand x!'=a mdo
If x<a mthenj € m-1
else 1 € m+1;
If X =a _m then output a_m;

Time: O(log n)

I'rf

rrau

1-25

i

i

i1

STrINg Processing Y

rrau
A String IS a sequence oficharacters from an alphalbet.

[iext strings: letters, numibers, and special characters.

String matching: searching for a given word/pattern in a
ext.

Examples:

(i) searching for a word or phrase on WWW or in a
Word document

(i1) searching for a short read in the reference genomic
sequence

1-26

i

i

114

Graph Problems
I'rf

rrau

Informal definition

A graphiis a collection: of:points called Vertices, some of
Which are connected by line segments called edlges.

Modeling real-life problems
Modeling \WAAAN
Communication networks
Project scheduling ...

Examples of:graph algorithms
Graph traversal algorithms
Shortest-path algorithms
Tiopological sorting

1-27

Fundamental data structures

It
ISt graph
array tree and binary tree
linked list Set and dictionary.
String
stack
queue

PrIOKItYy queue/heap

i

i

144

1-28

[_inear: Data Structures
'rr

rrau

AR RS Arrays
A sequence of n items ofithe same » fixed length (need preliminary
cata type that are stored reservation of memory)

contiguously 1 computer Memory

and made accessible by specifying a = contiguous memory locations

value of the array’s index. = direct access
Eiplicel Bl = Insert/delete
A SEqUENCe Ol Zero or more nodes Linked Lists
each containing two kinds of _
information: some data andione or = dynamic length
more links called pointers to other. = arbitrary memory locations

nodes of:the linked list.
Singly: linked list (next pointer)

Doubly linked ISt (Next + previous
poINters)

= access by following links
= Insert/delete

al a2 7ee——lan

i

i

il

1-29

i

i

114

Stacks and QUEUES

STACKS
A stack of:plates
Insertion/deletion can be done only at the top.
LIFO
1\Wo operations (push and pop)
(QUIEUIES
A queue oficustomers Waiting for SErViCes

Insertion/enqueue from the rear and deletion/dequetie frrom
the front.

FIFO
[\Wo0 operations (engueue and dequeue)

112

1-30

Priority Quete and Heap
r'rs

Priority gueues (implemented using heaps)

=« A data structure for maintaining a of elements,
each associated with a key/priority, with the
following operations

Finding the element with the highest priority
Deleting the element with the highest priority
Inserting a new element 9

» Scheduling jobs on a shared computer ® 8
o0 O

i

1-31

i

il

Grapnhs
I,
Formal definition

A graph G'= <\/; E> Is defined by a pair ofi two Sets: a
finite set \/ ofiitems called \ertices and a set & of vertex
pairs called eclges.

WncirectedrancicirectecigrapnsiGiigrapnis):

What’s the maximum number of edges in an undirected
graph wath [\/[vertices?

(ComPIEtENCEnSEN anCSPASEGRAPNS

A graph with every pair of Its Vertices connected by an
edge s called complete; Ky,

1-32

11

Graph Representation
1.

Aleljzleaniey ozt rp
n X N boolean matrix i (V| 1s n.

The element on the ith row and jth column is 1 if there’s an
edge fromiith vertex to the jth vertex; otherwise 0.

Tihe adjacency matrix ofian undirected graph IS Symmetric.
AC CENCYAIMKEGNISTS

A collection of: linked lists, one for: each Vertex, that contain all
the vertices adjacent to the list’s vertex.

\Which data structure would you use if the graph s a 100-node star

shape?
0111 H 2 8 B
8881 B
— 0000 = -
- m

1-33

1

\Weilghted Grapns
I,

WWeeinitelol of i o) fls
Graphs or: digraphs with numbers assigned to the edges.

1-34

Graph Properties -- Paths and Connectivity,

rrr

rrau

Paths

A path from vertex u to Vv of a graph G Is defined as a sequence of

adjacent (connected by an edge) Vvertices that starts with u and'ends
with v.

Simple paths: All'edges of a path are distinct.

Path lengths: the number: of:edges, or: the numiber: ofivertices — 1.
(CONNECIECIGRAPINS

A graph is said to be connected iffor every pair: ofiits vertices u and
\/ there IS a path from u to V.

(CONNECLECOMPOIEnt
I’he maximum connected subgraph of a given graph.

11

1-35

1

Graph Properties -- Acyclicity

(11,

Cyele

A simple path of a positive length that starts and
ends a the same Vertex.

Aevelle orziof
A graph without cycles
WAG (Directed Acyclic Graph)

1-36

Trees
[,

qirees
A tree (or free tree) Is a connected acyclic graph.

Forest: a graph that has no cycles but IS not necessarily connected.
Properties of trees

oK every two VErLiCes In a tree there always exists exactly one
simple path frrom one of:these Vertices to the other. \Why?

ROOLECrEes: Tihe above property makes It possible to select an
arpitrary Vertex in a free tree and consider It as the root of the

so called rooted tree.
[_evels in a rooted tree. rooted

«E|=|V-1 @® @® @&
@ ©o

i
® 0 o6

114

1-37

i

Rooted Tirees (1)

ANCESLONS

For any vertex \vin a tree 1; all'the vertices on the simple
path from the root to that vertex are called ancestors.

[YESCEnGants

All'the vertices for which a vertex \/ 1S an ancestor: are said
to be descendants of:\.

Rarent e cRanciSionngs

I (U, v) 1S the last edge ofithe simple path from the root to
Vertex v, uis said to be the parent of v and v is called a child
ofiU.

\/ertices that have the same parent are called siblings.
Feziv/es

A vertex without children is called a leaf:
SUDLIEE

A vertex vwith all'its descendants is called the subtree of: T:
rooted at V.

i

i

'Y

[11.

1-38

i

i

'Y

Rooted Tirees (11) T

DEPL of a VErtex

1'he length of: the simple path firrom the root to the Vertex.
HeIght ofra tree

1'he length of the longest simple path from the root to a leat:

h=2

1-39

Or.dered Tirees
1.
Or.dered trees

An ordered tree Is a rooted tree in which all the children of each
vertex are ordered.

BN ALIEES

A binary tree Is an ordered tree in Which every Vertex has no more
than two children and each children is designated s either a left child
or: a right child ofiits parent.

BINEIR/ASEARCIINIEES
Each vertex s assigned a numher.

A number: assigned to each parental vertex is larger than all the
numbers in its left subtree and smaller than all the numbers in its
right subtree.

, Where h IS the height of:a binary tree and n the size.

i

i

114

1-40

