
Introduction

1-1

What is an algorithm?

An algorithm is a sequence of unambiguous instructions

for solving a problem, i.e., for obtaining a required

output for any legitimate input in a finite amount of

time.

“computer”

problem

algorithm

input output

1-2

Algorithm

 An algorithm is a sequence of unambiguous

instructions for solving a problem, i.e., for

obtaining a required output for any legitimate

input in a finite amount of time.

• Can be represented various forms

• Unambiguity/clearness

• Effectiveness

• Finiteness/termination

• Correctness

1-3

Historical Perspective

 Euclid’s algorithm for finding the greatest common divisor

 Muhammad ibn Musa al-Khwarizmi – 9th century

mathematician

www.lib.virginia.edu/science/parshall/khwariz.html

http://www.lib.virginia.edu/science/parshall/khwariz.html

Notion of algorithm and problem

“computer”

algorithmic solution

(different from a conventional solution)

problem

algorithm

input

(or instance)

output

1-5

Example of computational problem: sorting

 Statement of problem:

• Input: A sequence of n numbers <a1, a2, …, an>

• Output: A reordering of the input sequence <a´
1, a

´
2, …, a´

n> so that
a´

i ≤ a´
j whenever i < j

 Instance: The sequence <5, 3, 2, 8, 3>

 Algorithms:

• Selection sort

• Insertion sort

• Merge sort

• (many others)

1-6

Selection Sort

 Input: array a[1],…,a[n]

 Output: array a sorted in non-decreasing order

 Algorithm:

 for i=1 to n

 swap a[i] with smallest of a[i],…,a[n]

• Is this unambiguous? Effective?

• See also pseudocode, section 3.1

1-7

Some Well-known Computational Problems

 Sorting

 Searching

 Shortest paths in a graph

 Minimum spanning tree

 Primality testing

 Traveling salesman problem

 Knapsack problem

 Chess

 Towers of Hanoi

 Program termination

Some of these problems don’t have efficient algorithms,

or algorithms at all!

1-8

Basic Issues Related to Algorithms

 How to design algorithms

 How to express algorithms

 Proving correctness

 Efficiency (or complexity) analysis

• Theoretical analysis

• Empirical analysis

 Optimality

1-9

Algorithm design strategies

 Brute force

 Divide and conquer

 Decrease and conquer

 Transform and conquer

 Greedy approach

 Dynamic programming

 Backtracking and branch-and-bound

 Space and time tradeoffs

1-10

Analysis of Algorithms

 How good is the algorithm?

• Correctness

• Time efficiency

• Space efficiency

 Does there exist a better algorithm?

• Lower bounds

• Optimality

1-11

What is an algorithm?

 Recipe, process, method, technique, procedure, routine,…
with the following requirements:

1. Finiteness
 terminates after a finite number of steps

2. Definiteness
 rigorously and unambiguously specified

3. Clearly specified input
 valid inputs are clearly specified

4. Clearly specified/expected output
 can be proved to produce the correct output given a valid input

5. Effectiveness
 steps are sufficiently simple and basic

1-12

Why study algorithms?

 Theoretical importance

• the core of computer science

 Practical importance

• A practitioner’s toolkit of known algorithms

• Framework for designing and analyzing algorithms for new

problems

 Example: Google’s PageRank Technology

1-13

Euclid’s Algorithm

Problem: Find gcd(m,n), the greatest common divisor of two

nonnegative, not both zero integers m and n

Examples: gcd(60,24) = 12, gcd(60,0) = 60, gcd(0,0) = ?

Euclid’s algorithm is based on repeated application of equality

gcd(m,n) = gcd(n, m mod n)

until the second number becomes 0, which makes the problem

trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

1-14

Two descriptions of Euclid’s algorithm

Step 1 If n = 0, return m and stop; otherwise go to Step 2

Step 2 Divide m by n and assign the value of the remainder to r

Step 3 Assign the value of n to m and the value of r to n. Go to

 Step 1.

while n ≠ 0 do

r ← m mod n

 m← n

 n ← r

return m

1-15

Other methods for computing gcd(m,n)

Consecutive integer checking algorithm

Step 1 Assign the value of min{m,n} to t

Step 2 Divide m by t. If the remainder is 0, go to Step 3;

 otherwise, go to Step 4

Step 3 Divide n by t. If the remainder is 0, return t and stop;

 otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

Is this slower than Euclid’s algorithm?

How much slower?

O(n), if n <= m , vs O(log n)

1-16

Other methods for gcd(m,n) [cont.]

Middle-school procedure

Step 1 Find the prime factorization of m

Step 2 Find the prime factorization of n

Step 3 Find all the common prime factors

Step 4 Compute the product of all the common prime factors

 and return it as gcd(m,n)

Is this an algorithm?

How efficient is it?

Time complexity: O(sqrt(n))

1-17

Sieve of Eratosthenes

Input: Integer n ≥ 2

Output: List of primes less than or equal to n

for p ← 2 to n do A[p] ← p

for p ← 2 to n do

 if A[p]  0 //p hasn’t been previously eliminated from the list

 j ← p* p

 while j ≤ n do

A[j] ← 0 //mark element as eliminated

j ← j + p

Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time complexity: O(n)

1-18

Two main issues related to algorithms

 How to design algorithms

 How to analyze algorithm efficiency

1-19

Algorithm design techniques/strategies

 Brute force

 Divide and conquer

 Decrease and conquer

 Transform and conquer

 Space and time tradeoffs

 Greedy approach

 Dynamic programming

 Iterative improvement

 Backtracking

 Branch and bound

1-20

Analysis of algorithms

 How good is the algorithm?

• time efficiency

• space efficiency

• correctness ignored in this course

 Does there exist a better algorithm?

• lower bounds

• optimality

1-21

Important problem types

 sorting

 searching

 string processing

 graph problems

 combinatorial problems

 geometric problems

 numerical problems

1-22

Sorting (I)

 Rearrange the items of a given list in ascending order.

• Input: A sequence of n numbers <a1, a2, …, an>

• Output: A reordering <a´
1, a

´
2, …, a´

n> of the input sequence such that
a´

1≤ a´
2 ≤ … ≤ a

´
n.

 Why sorting?

• Help searching

• Algorithms often use sorting as a key subroutine.

 Sorting key

• A specially chosen piece of information used to guide sorting. E.g., sort
student records by names.

1-23

Sorting (II)

 Examples of sorting algorithms

• Selection sort

• Bubble sort

• Insertion sort

• Merge sort

• Heap sort …

 Evaluate sorting algorithm complexity: the number of key comparisons.

 Two properties

• Stability: A sorting algorithm is called stable if it preserves the relative order
of any two equal elements in its input.

• In place : A sorting algorithm is in place if it does not require extra memory,
except, possibly for a few memory units.

1-24

Selection Sort

Algorithm SelectionSort(A[0..n-1])

//The algorithm sorts a given array by selection sort

//Input: An array A[0..n-1] of orderable elements

//Output: Array A[0..n-1] sorted in ascending order

for i  0 to n – 2 do

min  i

for j  i + 1 to n – 1 do

if A[j] < A[min]

min  j

swap A[i] and A[min]

1-25

Searching

 Find a given value, called a search key, in a given set.

 Examples of searching algorithms

• Sequential search

• Binary search …

Input: sorted array a_i < … < a_j and key x;

m (i+j)/2;

while i < j and x != a_m do

 if x < a_m then j  m-1

else i  m+1;

 if x = a_m then output a_m;

Time: O(log n)

1-26

String Processing

 A string is a sequence of characters from an alphabet.

 Text strings: letters, numbers, and special characters.

 String matching: searching for a given word/pattern in a

text.

Examples:

(i) searching for a word or phrase on WWW or in a

Word document

(ii) searching for a short read in the reference genomic

sequence

1-27

Graph Problems

 Informal definition

• A graph is a collection of points called vertices, some of
which are connected by line segments called edges.

 Modeling real-life problems

• Modeling WWW

• Communication networks

• Project scheduling …

 Examples of graph algorithms

• Graph traversal algorithms

• Shortest-path algorithms

• Topological sorting

1-28

Fundamental data structures

 list

• array

• linked list

• string

 stack

 queue

 priority queue/heap

 graph

 tree and binary tree

 set and dictionary

1-29

Linear Data Structures

 Arrays

• A sequence of n items of the same
data type that are stored
contiguously in computer memory
and made accessible by specifying a
value of the array’s index.

 Linked List

• A sequence of zero or more nodes
each containing two kinds of
information: some data and one or
more links called pointers to other
nodes of the linked list.

• Singly linked list (next pointer)

• Doubly linked list (next + previous
pointers)

 Arrays
 fixed length (need preliminary

reservation of memory)

 contiguous memory locations

 direct access

 Insert/delete

 Linked Lists
 dynamic length

 arbitrary memory locations

 access by following links

 Insert/delete

…a1 ana2 .

1-30

Stacks and Queues

 Stacks

• A stack of plates

– insertion/deletion can be done only at the top.

– LIFO

• Two operations (push and pop)

 Queues

• A queue of customers waiting for services

– Insertion/enqueue from the rear and deletion/dequeue from

the front.

– FIFO

• Two operations (enqueue and dequeue)

1-31

Priority Queue and Heap

 Priority queues (implemented using heaps)

 A data structure for maintaining a set of elements,
each associated with a key/priority, with the
following operations

 Finding the element with the highest priority

 Deleting the element with the highest priority

 Inserting a new element

 Scheduling jobs on a shared computer

9
6 8

5 2 3

9 6 5 8 2 3

1-32

Graphs

 Formal definition

• A graph G = <V, E> is defined by a pair of two sets: a
finite set V of items called vertices and a set E of vertex
pairs called edges.

 Undirected and directed graphs (digraphs).

 What’s the maximum number of edges in an undirected
graph with |V| vertices?

 Complete, dense, and sparse graphs

• A graph with every pair of its vertices connected by an
edge is called complete, K|V|

1 2

3 4

1-33

Graph Representation

 Adjacency matrix

• n x n boolean matrix if |V| is n.

• The element on the ith row and jth column is 1 if there’s an

edge from ith vertex to the jth vertex; otherwise 0.

• The adjacency matrix of an undirected graph is symmetric.

 Adjacency linked lists

• A collection of linked lists, one for each vertex, that contain all

the vertices adjacent to the list’s vertex.

 Which data structure would you use if the graph is a 100-node star

shape?

0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 0

2 3 4
4
4

1-34

Weighted Graphs

 Weighted graphs

• Graphs or digraphs with numbers assigned to the edges.

1 2

3 4

6

8

5

7
9

1-35

Graph Properties -- Paths and Connectivity

 Paths

• A path from vertex u to v of a graph G is defined as a sequence of
adjacent (connected by an edge) vertices that starts with u and ends
with v.

• Simple paths: All edges of a path are distinct.

• Path lengths: the number of edges, or the number of vertices – 1.

 Connected graphs

• A graph is said to be connected if for every pair of its vertices u and
v there is a path from u to v.

 Connected component

• The maximum connected subgraph of a given graph.

1-36

Graph Properties -- Acyclicity

 Cycle

• A simple path of a positive length that starts and

ends a the same vertex.

 Acyclic graph

• A graph without cycles

• DAG (Directed Acyclic Graph)

1 2

3 4

1-37

Trees

 Trees

• A tree (or free tree) is a connected acyclic graph.

• Forest: a graph that has no cycles but is not necessarily connected.

 Properties of trees

• For every two vertices in a tree there always exists exactly one
simple path from one of these vertices to the other. Why?

– Rooted trees: The above property makes it possible to select an
arbitrary vertex in a free tree and consider it as the root of the
so called rooted tree.

– Levels in a rooted tree.

 |E| = |V| - 1 1 3

2 4

5
1

3

2

4 5

rooted

1-38

Rooted Trees (I)

 Ancestors

• For any vertex v in a tree T, all the vertices on the simple
path from the root to that vertex are called ancestors.

 Descendants

• All the vertices for which a vertex v is an ancestor are said
to be descendants of v.

 Parent, child and siblings

• If (u, v) is the last edge of the simple path from the root to
vertex v, u is said to be the parent of v and v is called a child
of u.

• Vertices that have the same parent are called siblings.

 Leaves

• A vertex without children is called a leaf.

 Subtree

• A vertex v with all its descendants is called the subtree of T
rooted at v.

1-39

Rooted Trees (II)

 Depth of a vertex

• The length of the simple path from the root to the vertex.

 Height of a tree

• The length of the longest simple path from the root to a leaf.

1

3

2

4 5

h = 2

1-40

Ordered Trees

 Ordered trees

• An ordered tree is a rooted tree in which all the children of each
vertex are ordered.

 Binary trees

• A binary tree is an ordered tree in which every vertex has no more
than two children and each children is designated s either a left child
or a right child of its parent.

 Binary search trees

• Each vertex is assigned a number.

• A number assigned to each parental vertex is larger than all the
numbers in its left subtree and smaller than all the numbers in its
right subtree.

 log2n  h  n – 1, where h is the height of a binary tree and n the size.

9
6 8

5 2 3

6
3 9

2 5 8

