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What is an algorithm? 

An algorithm is a sequence of unambiguous instructions 

for solving a problem, i.e., for obtaining a required 

output for any legitimate input in a finite amount of 

time. 

“computer” 

problem 

algorithm 

input output 
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Algorithm 

 An algorithm is a sequence of unambiguous 

instructions for solving a problem, i.e., for 

obtaining a required output for any legitimate 

input in a finite amount of time. 

• Can be represented various forms

• Unambiguity/clearness

• Effectiveness

• Finiteness/termination

• Correctness
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Historical Perspective 

 Euclid’s algorithm for finding the greatest common divisor 

 Muhammad ibn Musa al-Khwarizmi – 9th century 

mathematician 

www.lib.virginia.edu/science/parshall/khwariz.html 

http://www.lib.virginia.edu/science/parshall/khwariz.html


Notion of algorithm and problem 

“computer” 

algorithmic solution 

(different from a conventional solution) 

problem 

algorithm 

input 

(or instance) 

output 
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Example of computational problem: sorting 

 Statement of problem: 

• Input: A sequence of n numbers <a1,   a2, …, an>

• Output: A reordering of the input sequence <a´
1,   a

´
2, …, a´

n> so that
a´

i ≤ a´
j  whenever i < j

 Instance: The sequence <5, 3, 2, 8, 3> 

 Algorithms: 

• Selection sort

• Insertion sort

• Merge sort

• (many others)
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Selection Sort 

 Input: array a[1],…,a[n] 

 Output: array a sorted in non-decreasing order 

 Algorithm: 

 for i=1 to n 

       swap a[i] with smallest of a[i],…,a[n]  

• Is this unambiguous? Effective?

• See also pseudocode, section 3.1
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Some Well-known Computational Problems 

 Sorting 

 Searching 

 Shortest paths in a graph 

 Minimum spanning tree 

 Primality testing 

 Traveling salesman problem 

 Knapsack problem 

 Chess 

 Towers of Hanoi 

 Program termination 

Some of these problems don’t have efficient algorithms, 

or algorithms at all! 



1-8 

Basic Issues Related to Algorithms 

 How to design algorithms 

 How to express algorithms 

 Proving correctness 

 Efficiency (or complexity) analysis 

• Theoretical analysis

• Empirical analysis

 Optimality 
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Algorithm  design strategies 

 Brute force 

 Divide and conquer 

 Decrease and conquer 

 Transform and conquer 

 Greedy approach 

 Dynamic programming 

 Backtracking and branch-and-bound 

 Space and time tradeoffs 
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Analysis of Algorithms 

 How good is the algorithm? 

• Correctness

• Time efficiency

• Space efficiency

 Does there exist a better algorithm? 

• Lower bounds

• Optimality
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What is an algorithm? 

 Recipe, process, method, technique, procedure, routine,… 
with the following requirements: 

1. Finiteness
 terminates after a finite number of steps 

2. Definiteness
 rigorously and unambiguously specified 

3. Clearly specified input
 valid inputs are clearly specified 

4. Clearly specified/expected output
 can be proved to produce the correct output given a valid input 

5. Effectiveness
 steps are sufficiently simple and basic 
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Why study algorithms? 

 Theoretical importance 

• the core of computer science

 Practical importance 

• A practitioner’s toolkit of known algorithms

• Framework for designing and analyzing algorithms for new

problems

 Example: Google’s PageRank Technology 
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Euclid’s Algorithm 

Problem: Find gcd(m,n), the greatest common divisor of two 

nonnegative, not both zero integers m and n 

Examples:  gcd(60,24) = 12,    gcd(60,0) = 60,    gcd(0,0) = ? 

Euclid’s algorithm is based on repeated application of equality 

gcd(m,n) = gcd(n, m mod n) 

until the second number becomes 0, which makes the problem 

trivial. 

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12 
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Two descriptions of Euclid’s algorithm 

Step 1  If n = 0, return m and stop; otherwise go to Step 2 

Step 2  Divide m by n and assign the value of the remainder to r 

Step 3  Assign the value of n to m and the value of r to n.  Go to 

        Step 1. 

while n ≠ 0 do

r ← m mod n 

    m← n   

    n ← r    

return m 
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Other methods for computing gcd(m,n) 

Consecutive integer checking algorithm 

Step 1  Assign the value of min{m,n} to t 

Step 2  Divide m by t.  If the remainder is 0, go to Step 3; 

        otherwise, go to Step 4 

Step 3  Divide n by t.  If the remainder is 0, return t and stop; 

        otherwise, go to Step 4 

Step 4  Decrease t by 1 and go to Step 2 

Is this slower than Euclid’s algorithm? 

How much slower?  

O(n), if n <= m , vs O(log n) 
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Other methods for gcd(m,n) [cont.] 

Middle-school procedure 

Step 1  Find the prime factorization of m 

Step 2  Find the prime factorization of n 

Step 3  Find all the common prime factors 

Step 4  Compute the product of all the  common prime factors 

        and return it as gcd(m,n) 

Is this an algorithm? 

How efficient is it? 

Time complexity: O(sqrt(n)) 
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Sieve of Eratosthenes 

Input: Integer n ≥ 2 

Output: List of primes less than or equal to n 

for p ← 2 to n do  A[p] ← p 

for p ← 2 to n do  

  if A[p]  0  //p hasn’t been previously eliminated from the list 

      j ← p* p 

          while j ≤ n  do 

A[j] ← 0  //mark element as eliminated 

j ← j + p 

Example: 2  3  4  5  6  7  8  9 10  11  12  13  14  15  16  17  18  19 20 

Time complexity: O(n) 
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Two main issues related to algorithms 

 How to design algorithms 

 How to analyze algorithm efficiency 
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Algorithm  design techniques/strategies 

 Brute force 

 Divide and conquer 

 Decrease and conquer 

 Transform and conquer 

 Space and time tradeoffs 

 Greedy approach 

 Dynamic programming 

 Iterative improvement 

 Backtracking 

 Branch and bound 



1-20 

Analysis of algorithms 

 How good is the algorithm? 

• time efficiency

• space efficiency

• correctness ignored in this course

 Does there exist a better algorithm? 

• lower bounds

• optimality
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Important problem types 

 sorting 

 searching 

 string processing 

 graph problems 

 combinatorial problems 

 geometric problems 

 numerical problems 
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Sorting (I) 

 Rearrange the items of a given list in ascending order. 

• Input: A sequence of n numbers <a1,   a2, …, an>

• Output: A reordering <a´
1,   a

´
2, …, a´

n> of the input sequence such that
a´

1≤ a´
2 ≤ … ≤ a

´
n.

 Why sorting? 

• Help searching

• Algorithms often use sorting as a key subroutine.

 Sorting key 

• A specially chosen piece of information used to guide sorting. E.g., sort
student records by names.
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Sorting (II) 

 Examples of sorting algorithms 

• Selection sort

• Bubble sort

• Insertion sort

• Merge sort

• Heap sort …

 Evaluate sorting algorithm complexity: the number of key comparisons. 

 Two properties 

• Stability: A sorting algorithm is called stable if it preserves the relative order
of any two equal elements in its input.

• In place : A sorting algorithm is in place if it does not require extra memory,
except, possibly for a few memory units.
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Selection Sort 

Algorithm SelectionSort(A[0..n-1]) 

//The algorithm sorts a given array by selection sort 

//Input: An array A[0..n-1] of orderable elements 

//Output: Array A[0..n-1] sorted in ascending order 

for i  0 to n – 2 do 

min  i 

for j  i + 1 to n – 1 do 

if A[j] < A[min] 

min  j 

swap A[i] and A[min] 
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Searching 

 Find a given value, called a search key, in a given set. 

 Examples of searching algorithms 

• Sequential search

• Binary search …

Input: sorted array a_i < … < a_j and key x; 

m (i+j)/2; 

while i < j and x != a_m do 

     if x < a_m then j  m-1 

else  i  m+1; 

 if x = a_m then output a_m; 

Time: O(log n) 
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String Processing 

 A string is a sequence of characters from an alphabet.  

 Text strings: letters, numbers, and special characters. 

 String matching: searching for a given word/pattern in a 

text. 

Examples: 

(i) searching for a word or phrase on WWW or in a 

Word document 

(ii) searching for a short read in the reference genomic 

sequence 
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Graph Problems 

 Informal definition 

• A graph is a collection of points called vertices, some of
which are connected by line segments called edges.

 Modeling real-life problems 

• Modeling WWW

• Communication networks

• Project scheduling …

 Examples of graph algorithms 

• Graph traversal algorithms

• Shortest-path algorithms

• Topological sorting
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Fundamental data structures 

  list 

• array

• linked list

• string

  stack 

  queue 

  priority queue/heap 

 graph 

 tree and binary tree 

 set and dictionary 
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Linear Data Structures 

 Arrays 

• A sequence of n items of the same
data type that are stored
contiguously in computer memory
and made accessible by specifying a
value of the array’s index.

 Linked List 

• A sequence of zero or more nodes
each containing two kinds of
information: some data and one or
more links called pointers to other
nodes of the linked list.

• Singly linked list (next pointer)

• Doubly linked list (next + previous
pointers)

 Arrays
 fixed length (need preliminary

reservation of memory)

 contiguous memory locations

 direct access

 Insert/delete

 Linked Lists
 dynamic length

 arbitrary memory locations

 access by following links

 Insert/delete

…a1 ana2 . 
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Stacks and Queues 

 Stacks 

• A stack of plates

– insertion/deletion can be done only at the top.

– LIFO

• Two operations (push and pop)

 Queues 

• A queue of customers waiting for services

– Insertion/enqueue  from the rear and deletion/dequeue from

the front.

– FIFO

• Two operations (enqueue and dequeue)
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Priority Queue and Heap 

 Priority queues (implemented using heaps)

 A data structure for maintaining a set of elements,
each associated with a key/priority, with the 
following operations 

 Finding the element with the highest priority

 Deleting the element with the highest priority

 Inserting a new element

 Scheduling jobs on a shared computer

9 
6 8 

5 2 3 

9 6 5 8 2 3 
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Graphs 

 Formal definition 

• A graph G = <V, E> is defined by a pair of two sets: a
finite set V of items called vertices and a set E of vertex
pairs called edges.

 Undirected and directed graphs (digraphs). 

 What’s the maximum number of edges in an undirected 
graph with |V| vertices? 

 Complete, dense, and sparse graphs 

• A graph with every pair of its vertices connected by an
edge is called complete, K|V| 

1 2 

3 4 
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Graph Representation 

 Adjacency matrix 

• n x n boolean matrix if |V| is n.

• The element on the ith row and jth column is 1 if there’s an

edge from ith vertex to the jth vertex; otherwise 0.

• The adjacency matrix of an undirected graph is symmetric.

 Adjacency linked lists 

• A collection of linked lists, one for each vertex, that contain all

the vertices adjacent to the list’s vertex.

 Which data structure would you use if the graph is a 100-node star 

shape? 

0 1 1 1 
0 0 0 1 
0 0 0 1 
0 0 0 0 

2 3 4 
4 
4 
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Weighted Graphs 

 Weighted graphs 

• Graphs or digraphs with numbers assigned to the edges.

1 2 

3 4 

6 

8 

5 

7 
9 
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Graph Properties -- Paths and Connectivity 

 Paths 

• A path from vertex u to v of a graph G is defined as a sequence of
adjacent (connected by an edge) vertices that starts with u and ends
with v.

• Simple paths: All edges of a path are distinct.

• Path lengths: the number of edges, or the number of vertices – 1.

 Connected graphs 

• A graph is said to be connected if for every pair of its vertices u and
v there is a path from u to v.

 Connected component 

• The maximum connected subgraph of a given graph.
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Graph Properties -- Acyclicity 

 Cycle 

• A simple path of a positive length that starts and

ends a the same vertex.

 Acyclic graph 

• A graph without cycles

• DAG (Directed Acyclic Graph)

1 2 

3 4 
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Trees 

 Trees 

• A tree (or free tree) is a connected acyclic graph.

• Forest: a graph that has no cycles but is not necessarily connected.

 Properties of trees 

• For every two vertices in a tree there always exists exactly one
simple path from one of these vertices to the other. Why?

– Rooted trees: The above property makes it possible to select an
arbitrary vertex in a free tree and consider it as the root of the
so called rooted tree.

– Levels in a rooted tree.

 |E| = |V| - 1 1 3 

2 4 

5 
1 

3 

2 

4 5 

rooted 
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Rooted Trees (I) 

 Ancestors 

• For any vertex v in a tree T, all the vertices on the simple
path from the root to that vertex are called ancestors.

  Descendants 

• All the vertices for which a vertex v is an ancestor are said
to be descendants of v.

 Parent, child and siblings 

• If (u, v) is the last edge of the simple path from the root to
vertex v, u is said to be the parent of v and v is called a child
of u.

• Vertices that have the same parent are called siblings.

 Leaves 

• A vertex without children is called a leaf.

 Subtree 

• A vertex v with all its descendants is called the subtree of T
rooted at v.
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Rooted Trees (II) 

 Depth of a vertex 

• The length of the simple path from the root to the vertex.

 Height of a tree 

• The length of the longest simple path from the root to a leaf.

1 

3 

2 

4 5 

h = 2 
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Ordered Trees 

 Ordered trees 

• An ordered tree is a rooted tree in which all the children of each
vertex are ordered.

 Binary trees 

• A binary tree is an ordered tree in which every vertex has no more
than two children and each children is designated s either a left child
or a right child of its parent.

 Binary search trees 

• Each vertex is assigned a number.

• A number assigned to each parental vertex is larger than all the
numbers in its left subtree and smaller than all the numbers in its
right subtree.

 log2n  h  n – 1, where h is the height of a binary tree and n the size. 

9 
6 8 

5 2 3 

6 
3 9 

2 5 8 


