Introduction



What 1s an algorithm?
I
An algorithm IS a sequence ofi inampiguous Istructions
for solving a problem, 1., for obtaining a required

output for any Iegitimeate mnput i a finite amount of
time.

“computer”
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Algorithm

An algorithm 1S a sequence of: inambiguous
Instructions for solving a problem, I.e., for
obtaining a required output for any legitimate
Input i a finite amount of: time.

» Can be represented various forms
« Unambiguity/clearness

» Effectiveness

* Finiteness/termination

e Correctness

I'rf
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Historical Perspective
r'rs

rrau
Euclid’s algorithm for finding the greatest common divisor

Muhammad ibn Musa al-Khwarizmi— 9" century
mathematician
WAL T viEginia.edu/science/parshall/khwariz. html
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http://www.lib.virginia.edu/science/parshall/khwariz.html
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Notion of:algorithm and problem

{11,

algorithm

“computer”

algorithmic solution
(different from a conventional solution)



Example oficomputational problems: sorting

I'r

rrau
Statement of: problem:

Inputs A sequence ofin NUMBErS <&y, &y, ---» 2>

Qutput: A reordering of the INput SEqUENCe <a ;, @, .--» a > SO that
a;Sa; wheneveri<|

Instance: Tihe sequence <5; 3, 2, 8, 3>

Algorithms:
Selection sort
Insertion sort
Merge sort
(many others)

i
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Selection Sort
I,
Input: array all], =+, aln]

Outputs array a sorted in non-decreasing order:

Algorithm:

for ;=1ton

swap al 7] with smallest of a[ 7], -, a[n]

* |s this unambiguous? Effective?
» See also pseudocode, section 3.1

111
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Some Well-known Computational Problems

Sorting

Searching

SNOKtest paths in a grapn
Minimum spanning tree
Primality testing

T'raveling salesman problem
Knapsack problem

Chess

Tiowers of Hanol

Program termination

Some of these problems don’t have efficient algorithms,
or algorithms at all!

rr
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Basic Issues Related to Algorithms

How to design algorithms
How to express algorithms
Proving COKrectness

Efficiency (or complexity) analysis
Theoretical analysis

Empirical analysis

Optimality

I'r
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Algorithm design strategies
g 0 0 I

Brute force Greedy approach

Divide and conguer. Dynamic programming

Decrease and conguer :
: Backtracking and branch-and-bound

Tiransform and conguer: :
Space and time tradeoffs

111
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Analysis oft Algorithms

How good Is the algorithm?
(COrrectness
Tiime efficiency
Space efficiency

[Does there exist a better algorithm?
L_ower: bounds
Optimality

I'r
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What 1s an algorithm?
T
Recipe, process, method, technique, procedure, routine,...
with the following requirements:

FINIteness
terminates after a finite number: of:steps

Definiteness

rigorously and tnambiguously specified
Clearly specified input

valid inputs are clearly specified

Clearly specified/expected output

can be proved toproduce the correct output given a valid mput

Effectiveness
steps are sutficiently simple and basic
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Ay study algorithms?

Theoretical importance

the core oficomputer: science

Practicallimportance
A practitioner’s toolkit of known algorithms

Framework for designing and-analyzing algorithms for new
problems

rr

1-12



Euclid’s Algorithm
I'rr

rrau
Problem: Eind gecd(m,n); the greatest common divisor: ofi two
nonnegative, Not both zero integers m and n

Examples: gcd(60,24) =12, gcd(60,0) =60, gcd(0,0)= 7
Fuclid’s algorithm is based on repeated application of equality
gcd(m,n) = ged(n, m modn)

untilithe second number: becomes 0, Which makes the problem
trivial.

Example: ged(60,24) = ged(24,12) = ged(12,0) = 12

i
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Two descriptions of Euclid’s algorithm

rr

rrau

Step L Ifin = 0; return m and stop; otherwise go to Step. 2
Step 2 Divide m by n and assign the value ofithe remainder to r

Step 3 Assign the value ofin to m and the value of rto n. Go to
Step 1.

while n=£ 0'do
7 <— m modn
nm<— ri
n<—r

Feturn m

111
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Other methods for computing gcd(m,n)’"

rrau

Consecutive integer checking algorithm
Step L' Assign the value offmin{m,nj to:t

Step 2 Divide m by t. Ifithe remainder 1s 0, go to Step: 3;
otherwise, go to Step 4

Step 3 Divide n by t. Ifithe remainder is 0, Feturn t and stop;
otherwise, go to Step4

Step 4 Decrease t by 1 and go to Step 2

Is this slower than Euclid’s algorithm?
How much slower?

O(n), if n<=m, vs O(log n)
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Other methods for ged(m,n) [cont. ] '

rrau

Middle-school procedure

Step I Find the prime factorization ofim
Step 2 Eind the prime factorization ofin
Step 3 Find all'the common prime factors

Step 4 Compute the product ofiall'the common prime factors
and returnit as ged(m,n)

IS this an algorithm?

How efficient Is 1t?
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Sieve ofi Eratosthenes
'y

Input: Integern = 2
Output: LList of primes less than or equal' to n

forp<— 2tondo Alp]< p

forp < 2tondo
ITAIp] = 0 //p hasn’t been previously eliminated from the list

J<p*p
while j=n do
Alj] < 0 //mark element as eliminated

J<J+Dp

~Example:2 S 45 6 76910 11 12 18 14" 15 16/ 17" 15° 1920

|
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TWo main Issues related to algorithms

How to design algorithms

How to analyze algorithmi efficiency
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Algorithm design techniques/strategies

Brute force

Divide and conquer:

Decrease and conguer:

[ransform and conquer:

Space and time tradeoffs

i

i
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I
Greedy approach
Dynamic programming
I[terative iImprovement
Backtracking

Branch and bound
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Analysis ofralgorithms

How good is the algorithm?
time efficiency
SpPace efficiency
CORNECHNESSHNORECNTIRUTISICOUNSE

[Does there exist a better algorithm?
[ower: bounds
optimality.

(11,
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Important problem types

SOKting
searching

SErING Processing
graph problems

combinatorial problems

geometric proplems

numerical probklems

rr
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Sorting (1) '

v e a
Rearrange the items of:a given list in ascending order.
INnpUt: A sequence ofin NUMBErS <a;, &, ---5 4>
Output: A reordering <a;, a,, ..., a > Of the Input sequence suchithat
ajSays <ag,
Ay sorting?
Help searching
Algorithms often use sorting as a key: subroutine.
Sorting key
A specially chosen piece offinformation used to guide sorting. E.g., sort
student records by names.
<~
<~
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Sorting (1) 'Y

Examples of sorting algorithms
Selection sort
Bubble sort
Insertion sort
IMerge sort
Heap sort ...

Evaluate sorting algorithm complexity: the number: ofi key Comparisons.
[\WO Properties

- A sorting algorithm is called stable 1fit preserves the relative order
ofiany two equal elements in its input.

- A sorting algorithmiis in place it it does not require extra memory,
except, possibly for a few memory: units.

i
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Selection Sort

113

Algorithm SelectionSort(A[0..n-1])
/el GRS ORIS IR GIVE el AN ASEI ECU OISO
ANPUESARaRE A DS oRORGE R0 eI EIMIENTLS
/[@)uitojuits Alprziy All0,pi=1E | Se ptaeligl zisesplelipel opelse
for1 € 0ton—2do
min € i
forj €1 +1ton—1do
I Afj] < A[min]
min € |
swap Afi] and A[min]
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Searching

Find a given value, called a ;1N a given set.
Examples ofisearching algorithms

Sequentialsearch

Binary search ...

Input: sorted array a 1< ... <a j and key Xx;
m < (14))/2;
whilei1<jand x!'=a mdo
If x<a mthenj € m-1
else 1 € m+1;
If X =a _m then output a_m;

Time: O(log n)

I'rf
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STrINg Processing Y

rrau
A String IS a sequence oficharacters from an alphalbet.

[iext strings: letters, numibers, and special characters.

String matching: searching for a given word/pattern in a
ext.

Examples:

(i) searching for a word or phrase on WWW or in a
Word document

(i1) searching for a short read in the reference genomic
sequence
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Graph Problems
I'rf

rrau

Informal definition

A graphiis a collection: of:points called Vertices, some of
Which are connected by line segments called edlges.

Modeling real-life problems
Modeling \WAAAN
Communication networks
Project scheduling ...

Examples of:graph algorithms
Graph traversal algorithms
Shortest-path algorithms
Tiopological sorting
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Fundamental data structures

It
ISt graph
array tree and binary tree
linked list Set and dictionary.
String
stack
queue

PrIOKItYy queue/heap

i
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[_inear: Data Structures
'rr

rrau

AR RS Arrays
A sequence of n items ofithe same » fixed length (need preliminary
cata type that are stored reservation of memory)

contiguously 1 computer Memory

and made accessible by specifying a = contiguous memory locations

value of the array’s index. = direct access
Eiplicel Bl = Insert/delete
A SEqUENCe Ol Zero or more nodes Linked Lists
each containing two kinds of _
information: some data andione or = dynamic length
more links called pointers to other. = arbitrary memory locations

nodes of:the linked list.
Singly: linked list (next pointer)

Doubly linked ISt (Next + previous
poINters)

= access by following links
= Insert/delete

al a2 7ee——lan

i

i
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Stacks and QUEUES

STACKS
A stack of:plates
Insertion/deletion can be done only at the top.
LIFO
1\Wo operations (push and pop)
(QUIEUIES
A queue oficustomers Waiting for SErViCes

Insertion/enqueue from the rear and deletion/dequetie frrom
the front.

FIFO
[\Wo0 operations (engueue and dequeue)

112
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Priority Quete and Heap
r'rs

Priority gueues (implemented using heaps)

=« A data structure for maintaining a of elements,
each associated with a key/priority, with the
following operations

Finding the element with the highest priority
Deleting the element with the highest priority
Inserting a new element 9

» Scheduling jobs on a shared computer ® 8
o0 O

i
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Grapnhs
I,
Formal definition

A graph G'= <\/; E> Is defined by a pair ofi two Sets: a
finite set \/ ofiitems called \ertices and a set & of vertex
pairs called eclges.

WncirectedrancicirectecigrapnsiGiigrapnis):

What’s the maximum number of edges in an undirected
graph wath [\/[ vertices?

(ComPIEtENCEnSEN anCSPASEGRAPNS

A graph with every pair of Its Vertices connected by an
edge s called complete; Ky,

1-32
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Graph Representation
1.

Aleljzleaniey ozt rp
n X N boolean matrix i (V| 1s n.

The element on the ith row and jth column is 1 if there’s an
edge fromiith vertex to the jth vertex; otherwise 0.

Tihe adjacency matrix ofian undirected graph IS Symmetric.
AC CENCYAIMKEGNISTS

A collection of: linked lists, one for: each Vertex, that contain all
the vertices adjacent to the list’s vertex.

\Which data structure would you use if the graph s a 100-node star

shape?
0111 H 2 8 B
8881 B
— 0000 = -
- m
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\Weilghted Grapns
I,

WWeeinitelol of i o) fls
Graphs or: digraphs with numbers assigned to the edges.
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Graph Properties -- Paths and Connectivity,

rrr
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Paths

A path from vertex u to Vv of a graph G Is defined as a sequence of

adjacent (connected by an edge) Vvertices that starts with u and'ends
with v.

Simple paths: All'edges of a path are distinct.

Path lengths: the number: of:edges, or: the numiber: ofivertices — 1.
(CONNECIECIGRAPINS

A graph is said to be connected iffor every pair: ofiits vertices u and
\/ there IS a path from u to V.

(CONNECLECOMPOIEnt
I’he maximum connected subgraph of a given graph.

11
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Graph Properties -- Acyclicity

(11,

Cyele

A simple path of a positive length that starts and
ends a the same Vertex.

Aevelle orziof
A graph without cycles
WAG (Directed Acyclic Graph)
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Trees
[,

qirees
A tree (or free tree) Is a connected acyclic graph.

Forest: a graph that has no cycles but IS not necessarily connected.
Properties of trees

oK every two VErLiCes In a tree there always exists exactly one
simple path frrom one of:these Vertices to the other. \Why?

ROOLECrEes: Tihe above property makes It possible to select an
arpitrary Vertex in a free tree and consider It as the root of the

so called rooted tree.
[_evels in a rooted tree. rooted

«E|=|V-1 @® @® @&
@ ©o

i
® 0 o6

114

1-37

i



Rooted Tirees (1)

ANCESLONS

For any vertex \vin a tree 1; all'the vertices on the simple
path from the root to that vertex are called ancestors.

[YESCEnGants

All'the vertices for which a vertex \/ 1S an ancestor: are said
to be descendants of:\.

Rarent e cRanciSionngs

I (U, v) 1S the last edge ofithe simple path from the root to
Vertex v, uis said to be the parent of v and v is called a child
ofiU.

\/ertices that have the same parent are called siblings.
Feziv/es

A vertex without children is called a leaf:
SUDLIEE

A vertex vwith all'its descendants is called the subtree of: T:
rooted at V.

i

i
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Rooted Tirees (11) T

DEPL of a VErtex

1'he length of: the simple path firrom the root to the Vertex.
HeIght ofra tree

1'he length of the longest simple path from the root to a leat:

h=2
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Or.dered Tirees
1.
Or.dered trees

An ordered tree Is a rooted tree in which all the children of each
vertex are ordered.

BN ALIEES

A binary tree Is an ordered tree in Which every Vertex has no more
than two children and each children is designated s either a left child
or: a right child ofiits parent.

BINEIR/ASEARCIINIEES
Each vertex s assigned a numher.

A number: assigned to each parental vertex is larger than all the
numbers in its left subtree and smaller than all the numbers in its
right subtree.

, Where h IS the height of:a binary tree and n the size.
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