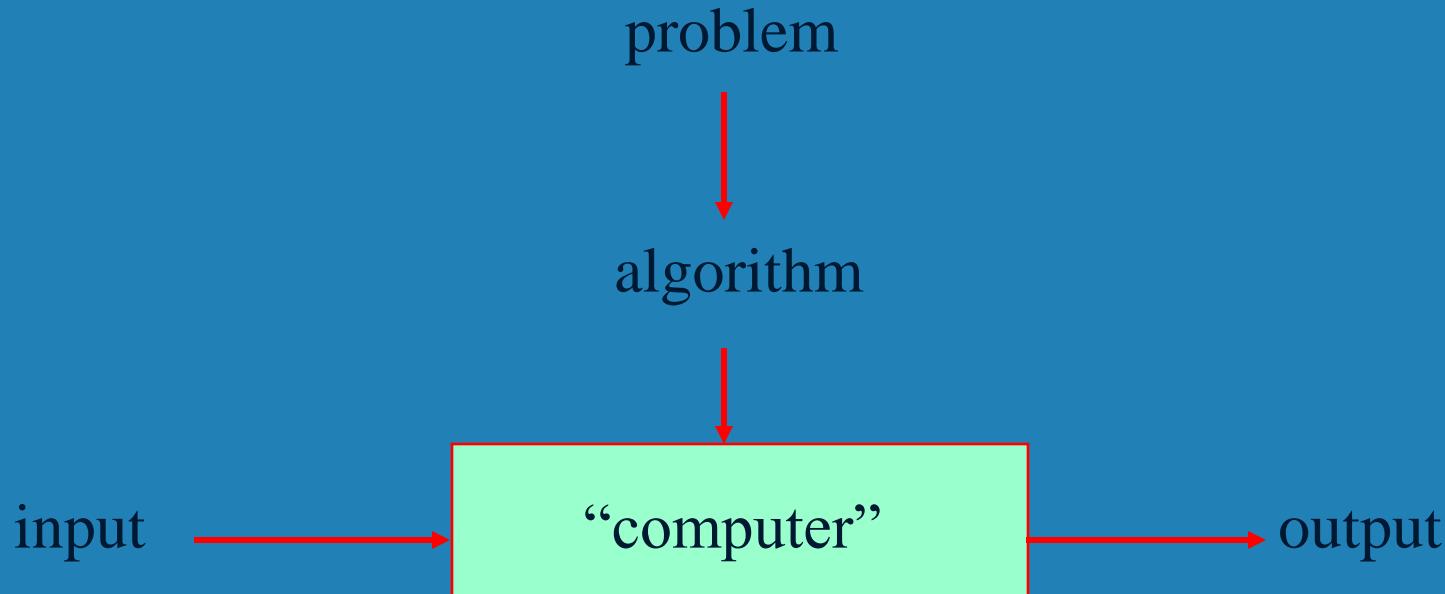


Introduction

What is an algorithm?

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.



Algorithm

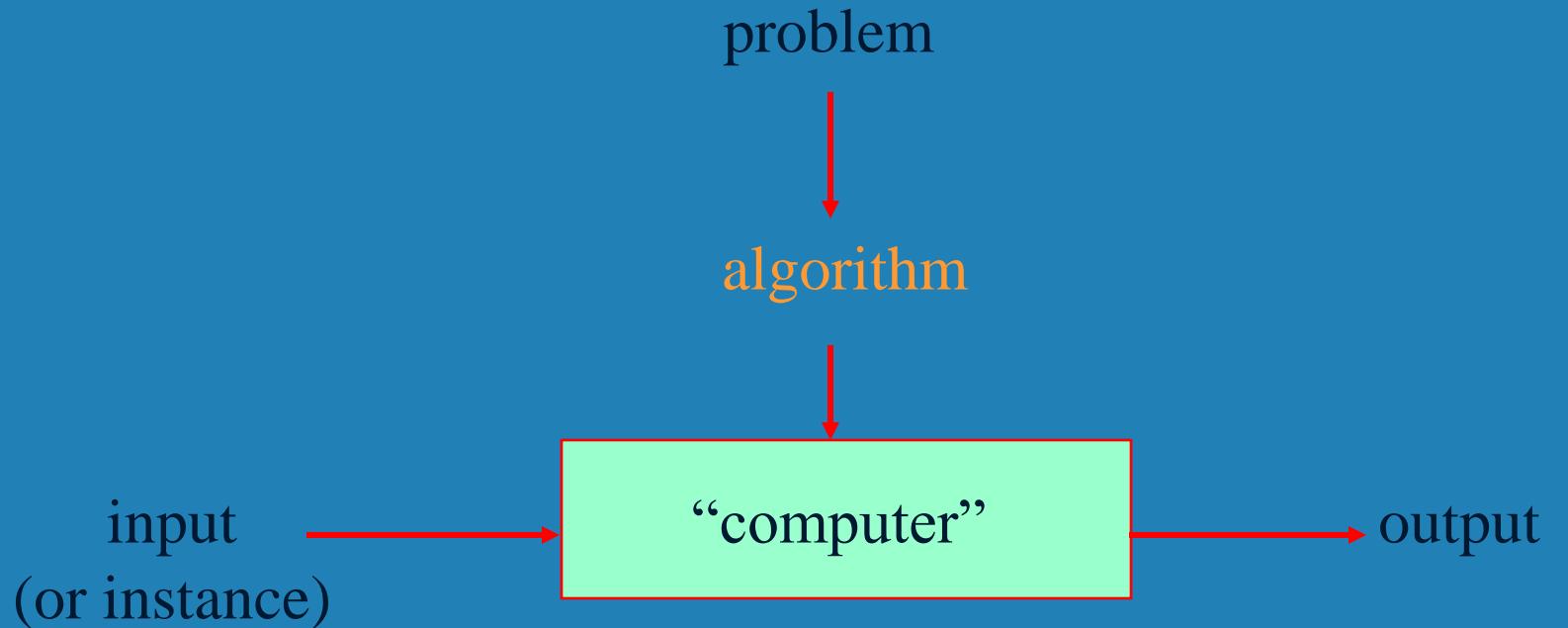
❑ An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

- Can be represented in various forms
- Unambiguity/clearness
- Effectiveness
- Finiteness/termination
- Correctness

Historical Perspective

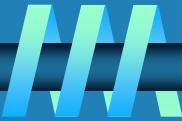
- ❑ Euclid's algorithm for finding the greatest common divisor
- ❑ Muhammad ibn Musa al-Khwarizmi – 9th century mathematician
www.lib.virginia.edu/science/parshall/khwariz.html

Notion of algorithm and problem



algorithmic solution
(different from a conventional solution)

Example of computational problem: sorting



❑ Statement of problem:

- ***Input:*** A sequence of n numbers $\langle a_1, a_2, \dots, a_n \rangle$
- ***Output:*** A reordering of the input sequence $\langle a'_1, a'_2, \dots, a'_n \rangle$ so that $a'_i \leq a'_j$ whenever $i < j$

❑ Instance: The sequence $\langle 5, 3, 2, 8, 3 \rangle$

❑ Algorithms:

- Selection sort
- Insertion sort
- Merge sort
- (many others)

Selection Sort

- ❑ **Input:** array $a[1], \dots, a[n]$
- ❑ **Output:** array a sorted in non-decreasing order
- ❑ **Algorithm:**

```
for  $i=1$  to  $n$ 
    swap  $a[i]$  with smallest of  $a[i], \dots, a[n]$ 
```

- Is this unambiguous? Effective?
- See also pseudocode, section 3.1

Some Well-known Computational Problems

- ❑ **Sorting**
- ❑ **Searching**
- ❑ **Shortest paths in a graph**
- ❑ **Minimum spanning tree**
- ❑ **Primality testing**
- ❑ **Traveling salesman problem**
- ❑ **Knapsack problem**
- ❑ **Chess**
- ❑ **Towers of Hanoi**
- ❑ **Program termination**

Some of these problems don't have efficient algorithms, or algorithms at all!

Basic Issues Related to Algorithms

- ❑ How to design algorithms
- ❑ How to express algorithms
- ❑ Proving correctness
- ❑ Efficiency (or complexity) analysis
 - Theoretical analysis
 - Empirical analysis
- ❑ Optimality

Algorithm design strategies

- ❑ Brute force
- ❑ Divide and conquer
- ❑ Decrease and conquer
- ❑ Transform and conquer
- ❑ Greedy approach
- ❑ Dynamic programming
- ❑ Backtracking and branch-and-bound
- ❑ Space and time tradeoffs

Analysis of Algorithms

❑ How good is the algorithm?

- Correctness
- Time efficiency
- Space efficiency

❑ Does there exist a better algorithm?

- Lower bounds
- Optimality

What is an algorithm?

- ❑ **Recipe, process, method, technique, procedure, routine,... with the following requirements:**
- 1. **Finiteness**
 - ❑ terminates after a finite number of steps
- 2. **Definiteness**
 - ❑ rigorously and unambiguously specified
- 3. **Clearly specified input**
 - ❑ valid inputs are clearly specified
- 4. **Clearly specified/expected output**
 - ❑ can be proved to produce the correct output given a valid input
- 5. **Effectiveness**
 - ❑ steps are sufficiently simple and basic

Why study algorithms?

❑ Theoretical importance

- the core of computer science

❑ Practical importance

- A practitioner's toolkit of known algorithms
- Framework for designing and analyzing algorithms for new problems

Example: Google's PageRank Technology

Euclid's Algorithm

Problem: Find $\gcd(m,n)$, the greatest common divisor of two nonnegative, not both zero integers m and n

Examples: $\gcd(60,24) = 12$, $\gcd(60,0) = 60$, $\gcd(0,0) = ?$

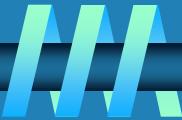
Euclid's algorithm is based on repeated application of equality

$$\gcd(m,n) = \gcd(n, m \bmod n)$$

until the second number becomes 0, which makes the problem trivial.

Example: $\gcd(60,24) = \gcd(24,12) = \gcd(12,0) = 12$

Two descriptions of Euclid's algorithm



- Step 1** If $n = 0$, return m and stop; otherwise go to Step 2
- Step 2** Divide m by n and assign the value of the remainder to r
- Step 3** Assign the value of n to m and the value of r to n . Go to Step 1.

while $n \neq 0$ **do**

$r \leftarrow m \bmod n$

$m \leftarrow n$

$n \leftarrow r$

return m

Other methods for computing $\gcd(m,n)$

Consecutive integer checking algorithm

Step 1 Assign the value of $\min\{m,n\}$ to t

Step 2 Divide m by t . If the remainder is 0, go to Step 3;
otherwise, go to Step 4

Step 3 Divide n by t . If the remainder is 0, return t and stop;
otherwise, go to Step 4

Step 4 Decrease t by 1 and go to Step 2

Is this slower than Euclid's algorithm?

How much slower?

$O(n)$, if $n \leq m$, vs $O(\log n)$

Other methods for $\gcd(m,n)$ [cont.]

Middle-school procedure

Step 1 Find the prime factorization of m

Step 2 Find the prime factorization of n

Step 3 Find all the common prime factors

**Step 4 Compute the product of all the common prime factors
and return it as $\gcd(m,n)$**

Is this an algorithm?

How efficient is it?

Time complexity: $O(\sqrt{n})$

Sieve of Eratosthenes

Input: Integer $n \geq 2$

Output: List of primes less than or equal to n

for $p \leftarrow 2$ **to** n **do** $A[p] \leftarrow p$

for $p \leftarrow 2$ **to** n **do**

if $A[p] \neq 0$ // p hasn't been previously eliminated from the list

$j \leftarrow p * p$

while $j \leq n$ **do**

$A[j] \leftarrow 0$ //mark element as eliminated

$j \leftarrow j + p$

Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time complexity: $O(n)$

Two main issues related to algorithms



- ❑ How to design algorithms
- ❑ How to analyze algorithm efficiency

Algorithm design techniques/strategies

- ❑ Brute force
- ❑ Greedy approach
- ❑ Divide and conquer
- ❑ Dynamic programming
- ❑ Decrease and conquer
- ❑ Iterative improvement
- ❑ Transform and conquer
- ❑ Backtracking
- ❑ Space and time tradeoffs
- ❑ Branch and bound

Analysis of algorithms

❑ How good is the algorithm?

- time efficiency
- space efficiency
- correctness ignored in this course

❑ Does there exist a better algorithm?

- lower bounds
- optimality

Important problem types



- ❑ sorting
- ❑ searching
- ❑ string processing
- ❑ graph problems
- ❑ combinatorial problems
- ❑ geometric problems
- ❑ numerical problems

Sorting (I)

❑ Rearrange the items of a given list in ascending order.

- Input: A sequence of n numbers $\langle a_1, a_2, \dots, a_n \rangle$
- Output: A reordering $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \dots \leq a'_n$.

❑ Why sorting?

- Help searching
- Algorithms often use sorting as a key subroutine.

❑ Sorting key

- A specially chosen piece of information used to guide sorting. E.g., sort student records by names.

Sorting (II)

❑ Examples of sorting algorithms

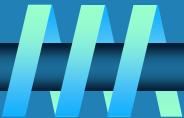
- Selection sort
- Bubble sort
- Insertion sort
- Merge sort
- Heap sort ...

❑ Evaluate sorting algorithm complexity: the number of key comparisons.

❑ Two properties

- Stability: A sorting algorithm is called stable if it preserves the relative order of any two equal elements in its input.
- In place : A sorting algorithm is in place if it does not require extra memory, except, possibly for a few memory units.

Selection Sort



```
Algorithm SelectionSort(A[0..n-1])  
//The algorithm sorts a given array by selection sort  
//Input: An array A[0..n-1] of orderable elements  
//Output: Array A[0..n-1] sorted in ascending order  
for i ← 0 to n – 2 do  
    min ← i  
    for j ← i + 1 to n – 1 do  
        if A[j] < A[min]  
            min ← j  
    swap A[i] and A[min]
```

Searching



- ❑ Find a given value, called a search key, in a given set.
- ❑ Examples of searching algorithms
 - Sequential search
 - Binary search ...

Input: sorted array $a_i < \dots < a_j$ and key x ;

$m \leftarrow (i+j)/2$;

while $i < j$ and $x \neq a_m$ do

 if $x < a_m$ then $j \leftarrow m-1$

 else $i \leftarrow m+1$;

 if $x = a_m$ then output a_m ;

Time: $O(\log n)$

String Processing

- ❑ A string is a sequence of characters from an alphabet.
- ❑ Text strings: letters, numbers, and special characters.
- ❑ String matching: searching for a given word/pattern in a text.

Examples:

- (i) searching for a word or phrase on WWW or in a Word document
- (ii) searching for a short read in the reference genomic sequence

Graph Problems

❑ Informal definition

- A graph is a collection of points called **vertices**, some of which are connected by line segments called **edges**.

❑ Modeling real-life problems

- Modeling WWW
- Communication networks
- Project scheduling ...

❑ Examples of graph algorithms

- Graph traversal algorithms
- Shortest-path algorithms
- Topological sorting

Fundamental data structures

❑ list

- array
- linked list
- string

❑ stack

❑ queue

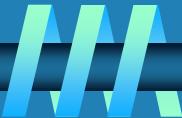
❑ priority queue/heap

❑ graph

❑ tree and binary tree

❑ set and dictionary

Linear Data Structures



❑ Arrays

- A sequence of **n** items of the same data type that are stored contiguously in computer memory and made accessible by specifying a value of the array's index.

❑ Linked List

- A sequence of zero or more nodes each containing two kinds of information: some data and one or more links called pointers to other nodes of the linked list.
- Singly linked list (next pointer)
- Doubly linked list (next + previous pointers)

■ Arrays

- fixed length (need preliminary reservation of memory)
- contiguous memory locations
- direct access
- Insert/delete

■ Linked Lists

- dynamic length
- arbitrary memory locations
- access by following links
- Insert/delete

Stacks and Queues

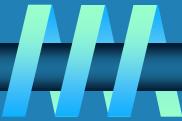
Q Stacks

- A stack of plates
 - insertion/deletion can be done only at the top.
 - LIFO
- Two operations (push and pop)

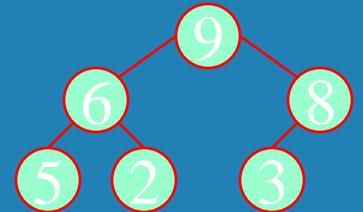
Q Queues

- A queue of customers waiting for services
 - Insertion/enqueue from the rear and deletion/dequeue from the front.
 - FIFO
- Two operations (enqueue and dequeue)

Priority Queue and Heap



- Priority queues (implemented using heaps)
 - A data structure for maintaining a **set** of elements, each associated with a key/priority, with the following operations
 - Finding the element with the highest priority
 - Deleting the element with the highest priority
 - Inserting a new element
 - Scheduling jobs on a shared computer



Graphs



❑ Formal definition

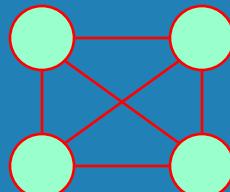
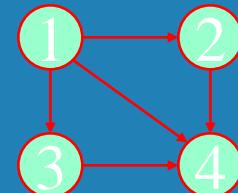
- A graph $G = \langle V, E \rangle$ is defined by a pair of two sets: a finite set V of items called **vertices** and a set E of vertex pairs called **edges**.

❑ Undirected and directed graphs (digraphs).

❑ What's the maximum number of edges in an undirected graph with $|V|$ vertices?

❑ Complete, dense, and sparse graphs

- A graph with every pair of its vertices connected by an edge is called **complete**, $K_{|V|}$



Graph Representation

Q Adjacency matrix

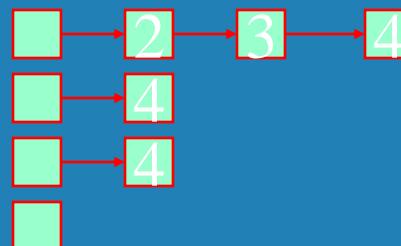
- $n \times n$ boolean matrix if $|V|$ is n .
- The element on the i th row and j th column is 1 if there's an edge from i th vertex to the j th vertex; otherwise 0.
- The adjacency matrix of an undirected graph is symmetric.

Q Adjacency linked lists

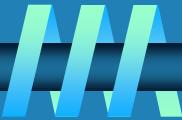
- A collection of linked lists, one for each vertex, that contain all the vertices adjacent to the list's vertex.

Q Which data structure would you use if the graph is a 100-node star shape?

0	1	1	1
0	0	0	1
0	0	0	1
0	0	0	0

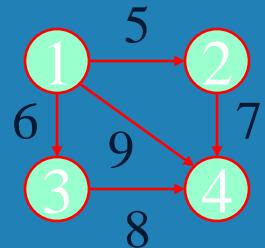


Weighted Graphs

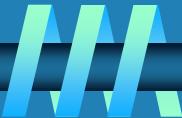


❑ Weighted graphs

- Graphs or digraphs with numbers assigned to the edges.



Graph Properties -- Paths and Connectivity



.Paths

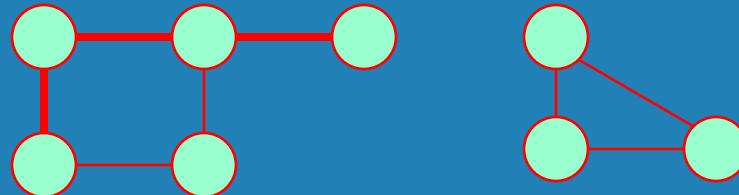
- A path from vertex u to v of a graph G is defined as a sequence of adjacent (connected by an edge) vertices that starts with u and ends with v .
- Simple paths: All edges of a path are distinct.
- Path lengths: the number of edges, or the number of vertices – 1.

.Connected graphs

- A graph is said to be connected if for every pair of its vertices u and v there is a path from u to v .

.Connected component

- The maximum connected subgraph of a given graph.



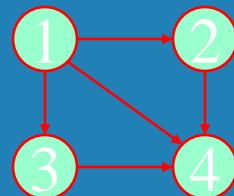
Graph Properties -- Acyclicity

❑ Cycle

- A simple path of a positive length that starts and ends at the same vertex.

❑ Acyclic graph

- A graph without cycles
- **DAG (Directed Acyclic Graph)**



Trees



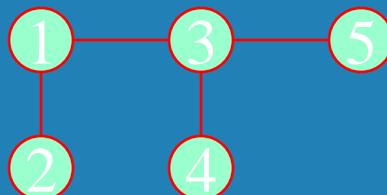
❑ Trees

- A tree (or **free tree**) is a connected acyclic graph.
- Forest: a graph that has no cycles but is not necessarily connected.

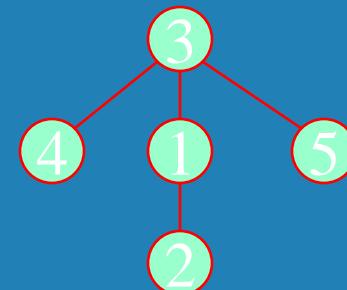
❑ Properties of trees

- For every two vertices in a tree there always exists exactly one simple path from one of these vertices to the other. Why?
 - **Rooted trees:** The above property makes it possible to select an arbitrary vertex in a free tree and consider it as the root of the so called rooted tree.
 - **Levels in a rooted tree.**

■ $|E| = |V| - 1$



rooted



Rooted Trees (I)

❑ Ancestors

- For any vertex v in a tree T , all the vertices on the simple path from the root to that vertex are called ancestors.

❑ Descendants

- All the vertices for which a vertex v is an ancestor are said to be descendants of v .

❑ Parent, child and siblings

- If (u, v) is the last edge of the simple path from the root to vertex v , u is said to be the parent of v and v is called a child of u .
- Vertices that have the same parent are called siblings.

❑ Leaves

- A vertex without children is called a leaf.

❑ Subtree

- A vertex v with all its descendants is called the subtree of T rooted at v .

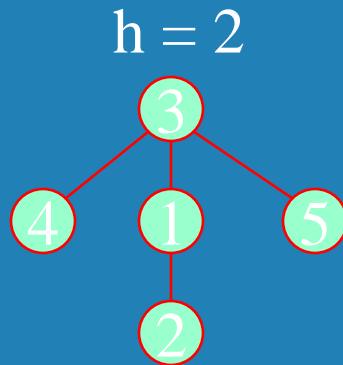
Rooted Trees (II)

❑ Depth of a vertex

- The length of the simple path from the root to the vertex.

❑ Height of a tree

- The length of the longest simple path from the root to a leaf.



Ordered Trees

Ordered trees

- An ordered tree is a rooted tree in which all the children of each vertex are ordered.

Binary trees

- A binary tree is an ordered tree in which every vertex has no more than two children and each children is designated as either a left child or a right child of its parent.

Binary search trees

- Each vertex is assigned a number.
- A number assigned to each parental vertex is larger than all the numbers in its left subtree and smaller than all the numbers in its right subtree.

$\lfloor \log_2 n \rfloor \leq h \leq n - 1$, where h is the height of a binary tree and n the size.

