Divide & Conquer

Divide & Conquer

- 000000/
The Divide & Conquer approach breaks down the
problem into multiple smaller sub-problems, solves
the sub-problems recursively, then combines the
solutions of the sub-problems to create a solution
for the original problem.

The steps involved are.

Divide the problem into number of sub-problems

Conquer the sub-problems by solving them recursively

Combine the solution of the sub-problems to solve the
original problem

Divide & Conquer : Merge Sort

-]
We need to sort a list of n numbers.

The merge sort algorithm uses divide & conquer
strategy to solve this problem in the following way.

The steps involved are.

Divide the n element sequence into 2 sub-sequences of
n/2 elements each

Conquer sort the sub-sequences recursively

Combine merge the two sorted sub-sequences to form the
end result

Divide & Conquer: Merge Sort

void mergesort(int af |, int 1, int 1)

{

it 1<r)

d
intm=_>1+71) /2 // divide
mergesort(a, |, m); // conquer 1% sub-sequence
mergesort(a, m+1, 1); // conquer 2°¢ sub-sequence
merge(a, 1, m, 1); // combine

Divide & Conquer: Merge Sort

void merge(int a[|, int 1, int m, int r)
1
mtnl =m-1+1;
ntn2 =r-m;y
int L[n1 + 2]; // create arrays I. & R
int R[n2 + 2J;
for (int1=1;1 <= nl;i++)

{
L[i] =all +1-1]; // initialize L. with elements a[l] to a|m]
b
for (intj = 1;j <= n2; j++)
{
R[j] = a[m + j]; // initialize R with elements ajm+1] to a[t]
b
L[nl + 1] = R[n2 + 1] = MAXINT; // #define MAXINT = 65536
intp=1;
intq=1;

for (intk =1; k <= r; k++)
alk] = (L{p] <= R[q]) ? Lp*++] : R[q++];

Divide & Conquer : Merge Sort

Ifa- {5, 12, 17, 6} Function calls are in the following order

mergesort(a, 1, 4)

» mergesori(a, 1, 2)
mergesort(a, 1, 1)
mergesort(a, 2, 2)
merge(a, 1, 1, 2)
a=512176

» mergesort(a, 3, 4)
mergesort(a, 3, 3)
mergesort(a, 4, 4)
merge(a, 3, 3, 4)
a=5120617

» merge(a, 1, 2, 4)

» a=061217

a=001217

vold mergesort(int a[|, int 1, int r)

d
it 1<r)
d
intm=(>01+71)/2;
mergesort(a, 1, m);
mergesort(a, m+1, r);
merge(a, 1, m, r);
;
h

Divide & Conquer : Merge Sort

Analzsis

Let T(n) be the running time for input size n

When n = 1, the problem can be solved in constant
time

o T(n) - ©(1), whenn = 1

When n > 1 we divide the problem into 2 sub-
problems, each of size n/2, which contributes to
2T(n/2) running time

Merging an n elements takes @(n) time

o T(n) - 2T(n/2) + B(n), when n > 1

To estimate the running time of merge sort for an n
clement sequence we have to solve this recurrence

Divide & Conquer : Merge Sort

Analzsis

T(n) = 2T(n/2) + O(n)

Is of the form T(n) - a.T(n/b) + f(n), a=2&b=2
log,(a) - 1

n'og, (3 - nl! - n

f(n) - O(n) - @(nlogb(a))

Hence, by case 2 of the master method
T(n) - O(n.Ig(n))

Quick Sort

Quick sort, like merge sort is based on divide and
conquer technique for sorting an array all ... r|

The steps involved are.

Divide the array all ... r] is partitioned into two sub-
components all ... p| and alp + 1 ... r], such that every
clement of all ... p] is less than equal to every element of
alp+1...1]

Conquer The sub-arrays all ... p] and alp + 1 ... r] are
sorted by recursive calls to quicksort

Combine Since the sub-arrays are sorted in place no
overhead of combining them is required

Quick Sort

- 000000/
void gsort(int all, int I, int r)
d
if (1 <r)
d
int p - partition(a, 1, r);

gsort(a, 1, p);
gsort(a, p + 1, r);

Quick Sort

int partition(int a[], int p, int q)

{
int x = a[pl; i)
inti=p-1;
intj=q-+1; i
while (1) { 1 :
do {
144 i]
§ while (ali] < x);
o
- i)
§ while (alj] > x); 4 ? 5 9 6
if (i < j) swap(alil, aljl); : ;
else return j; ' :
} h 4 2 5 9 6

Quick Sort: Worst Case Analysis

The worst case for quick sort is when partition function
produces one sub-array with (n — 1) elements and another
sub-array with 1 element. If this unbalanced partitioning
happens at very step of the algorithm we call it the worst
case quick sort behavior.

Since partitioning takes @(n) time and T(1) - O(1), the
recurrence for the worst case running time is

T(n) = T(n - 1) + O(n)
-Tn—-2)+O(n - 1) + O(n)

T(l) .. +0OMn-1)+06(n)
O(l)+... +O(n - 1) + B(n)
@(I+2+...+n)

n)

O(n

A

Quick Sort: Best Case Analysis

The best case for quick sort is when partition
function produces two sub-arrays with (n/2)
elements each.

The recurrence is then

T(n) = 2T(n/2) + O(n)

By case 2 of the master method, the solution is:
T(n) - O(n.Ig(n))

Recursive Functions

e
A recursive function is one that manes a call to itself.
For example:
o We can define factorial of a positive integer n, as
o Factorial(n) - 1, whenn - 0, 1
o Factorial(n) - n * Factorial(n — 1), when n > 1
Notice that we are calculating Factorial(n) in terms of
Factorial(n — 1).
In other words, to find Factorial(Sf we need to find
Factorial(4) and multiply the result by 5.

To find Factoria1(4), we need to find Factorial(S) and
multiply the result by 4, and so on.

Recursion Implementation
I —

A recursive factorial function loons line this:.
unsigned inf factorial(unsigned int n) {
if (n <= 1) refurn I,
else refurn n * factorial(n — 1);

/

Recursive functions calls are not executed
immediately.

They are placed on a stack until the condition that
terminates recursion is encountered.

The function calls are executed in reverse order,
as they are popped off the stack.

Example: factorial(3)

%ettus _c?résider the invocation of unsigned int factorial(unsigned int n) {
actorial(3). if (n <= 1) return I,

To compute 3 * factorial(2) in the else else return n * factorial(n — I);

statement, the computation of
factorial(3) is suspended and factorial | /
is invoked with n = 2.

When computation of factorial(3) is
suspended then the program state (i.e.
local variables, program counter efc.)

are pushed on recursion stack. factorial(2):
Similarly invocation of factorial(2) is n-2
suspended, factorial is invoked with n factorial(3)-
- 1.

n=3

factorial 1? returns 1, program state
of factorial(2) is then popped off the
stack to compute factorial(2).

Recursion vs. Iteration
.

unsigned inf factorial(unsigned inf n) | unsigned inf tactorial(unsigned int n) |
if (n <- 1) return 1; unsigned int resulf = 1;
else return n * factorial(n — 1); while (n > 1) {
/ resulf *~ n--;
/
Usually slower, due to return result;
overhead of stack /
manipulation and function
calls. Runs faster as
Has the risk of stack aSSlgnmentS are
overflow, for too many
function calls. usually less costly
Some problems can be more than function calls.

easily solved by recursion.

Tail Recursion

.00
tail recursion (or tail-end recursion) is a special
case of recursion in which the last operation of the
function, i.e. the tail call, is the recursive call.

In other words there are no more operations after
the function calls itself.

Such recursions can be easily transtormed to
iterations.

Replacing recursion with iteration, can drastically
decrease the amount of stack space used and
improve program efficiency.

Tail Recursion: Example
I —

unsigned int factorial(unsigned int n) {
return tailfactorial(1, n);

/

unsigned int tailFactorial(unsigned int result, unsigned int n) {
if (n <= 1) return result;
else return tailFactorial(n * result, n - 1);

Tail Recursion & Iteration
-

unsigned int factorial(unsigned int n) { unsigned int factorial(unsigned int n) {
return tailFactorial(1, n); unsigned int resulf - 1;
/ while (n > 1) {
resulf *= n—-;

unsigned int tailFactorial(unsigned inf result, unsigned int n) {)
else return tailFactorial(n * result, n — 1); J
/
Let us trace the execution of this Look at how the variables change

with each iteration while

program to calculate factorial(3): calculating factorial(3).

fzzcz‘orjzz](3)

factorial(3)
z‘ai]Fzzctoring/result= I n-= ? resulf-1,n=3
tailFacforia /resu]t =3 n-= / resulf=-3 n=2
tailFactorial(resulf- 6, n - 1) resulf=6,n=1

Tail Recursion & Iteration
-

As we can see the variables result and n are
identical for iterative and tail-recursive methods.

Hence tail recursion and iteration are equivalent.

Thus a recursive algorithm can be converted to a
tail recursive algorithm.

A tail recursive algorithm can in-turn be
converted to a iterative algorithm.

Tower of Hanoi

It is a mathematical game, which consists of three
towers, and a number of disks of different sizes which
can slide onto any tower. The puzzle starts with the
disks in a neat stack in ascending order of size on one
tower, the smallest at the top, thus making a conical
shape.

The objective of the puzzle is to move the entire stack
to another tower, obeying the following rules:.
o Only one disk may be moved at a time.

o Each move consists of taking the upper disk from one of
the towers and sliding it onto another tower, on top of the
other disks that may already be present on that tower.

o No disk may be placed on top of a smaller disk.

Recursive Solution
.

A key to solving this puzzle is to recognize that it can be solved
by breaking the problem down into a collection of smaller
problems and further breaking those problems down into even
smaller problems until a solution is reached. The following
procedure demonstrates this approach.

1. label the towers A, B, C—these labels may move at different steps

2. let # be the total number of disks

3. number the disks from 1 (smallest, topmost) to # (largest,
bottommost)

4. To move n disks from tower A to tower C:
5. move n—1 disks from A to B. This leaves disc #n alone on tower A
6. move disk #n from A to C
7. move n—1 disks from B to C so they sit on disk #n
The above is a

http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Recursion

Step 6: Move disk2 from B to C Step 7: Move disk1 from A to C

Recursive Algorithm
-

void dohanoi(int N, inf from, int fo, inf via)
{
if (N> 0)
{
dohanoi(N- 1, from, via, {0);
printf ("move %d --> %d \n', from, fo);
dohanoi(N-1, via, fo, from),

/

Recurrence Relations

-
Let T(n) be the number of moves needed to solve
the puzzle with n disks.

The recursive solution involves moving n — 1 disks
from one tower to another twice, making one
additional move in between.

Thus it follows that-

T(n)-Tn—1)+ 1+ T(n—1) - 2T(n — 1) + 1
Intuitively, T(1) - 1

The equation above is called a recurrence relation.

nth order linear recurrence

relations
-

Consider the following equation:

S(k) = ¢;S(k— 1) + ¢,S(k—2) + ... + ¢,S(k—n) + f(n)
Where ¢, ¢,, ..., ¢, are numbers and f is a numeric
function.

Such an equation is called an nt" order linear
recurrence relation, if ¢, # 0

For example:

oF-F -F,=0 ... order 2
o P(j) + 2P(j — 3) - j* ... order 3

o a(n) = 2(a(n — 1) + n)) ... order 1

Homogeneous recurrence relations

Consider the following equation.

S(n) = ¢, S(n— 1) + ¢c,S(n— 2) + ... + ¢,§(n —n) + f(n)
If f(n) - O, for all n, then this equation is called a
homogeneous recurrence relation.

For example, say:

S(k)—75(k—1)+125(k—2)=0,5(0)=S1)=4..0)

Let S(k) = b. ak be the solution, where a, b are non-zero constants

ThenS(k —1) = b.a*1,S(k —2) = b.ak?

Substituting in (i),b.a®-7b.a*1 + 12b.a* %2 =0

Dividing by b.a*%,a> —7a+ 12 =0 ... (ii)

This equation is called the characteristic equation of the recurrence.
Solving (ii) yields, (a - 3)(a-4) =0

Thus the general solution is : S(k) = b,.3% + b,. 4%

Using the initial conditions, S(0) = S(1) =4, wegetb, =12, b, =-8
Thus, S(k) = 12.3% - 8.4F

Algorithm for solving

homogeneous recurrences

Write the characteristic equation of the
recurrence Consider the following equation:

S(k) + ¢, S(k — 1) + c,S(k — 2) + ... + ¢,S(k —1n) = 0
Which is: a® + c,at! + ... +¢c, =0

Find all the roots of the characteristic equation.
If there are n characteristic roots a, ..., a,, then
general solution is

S(n) =b.ac+bya,k+ ... +bark

Algorithm for solving

homogeneous recurrences

If there are fewer than n characteristic roots then
at least one root is a multiple root. If a;is a double

root then ba* is replaced by (b, + by k).a*

In general, 1f a; 1s a root of multiplicity p, then

ba is replaced by (bjo + by + ... + by, 1)k h. a

If n initial conditions are given then form n linear
equations and solve.

Solving homogeneous recurrences
R

fn)=f(n—1)+8f(n—2)—12f(n—3) ...(0)
initial conditions: f(0) =0,f(1) =1,f(2) =3

We havef(n) -f(n-1)-8f(n-2) + 12f(n-3) =0
The characteristic equation of this recurrence relation is:
a’-a‘-8a+12=20.. (ii)

Solving (if) we get, (a-2)°.(a + 3) =0
Thus the characteristicroots are:a =2,a =2, a = -3 ... (iil)

Since a = 2 Is a characteristic root with multiplicity 2, we write
f(n) =(b,+ b,.n).2" + b,(-3)"
Applying the initial conditions, we can get the values of b, b, & b,

Non—homogeneous recurrence

relations
-

Consider the following equation.

S(k) + ¢;S(k— 1) + ¢,S(k—2) + ... + ¢,S(k —n) - f(n)
If f(n) # O, for all n, then this equation is called
a non-homogeneous recurrence relation.

For example, T(n) - 2T(n—1) + 1

Algorithm for solving non-

homogeneous recurrences

Write the associated homogeneous equation by
putting the RHS, i.e. f(n) - O, solve this using
previous algorithm. Call this the homogeneous
solution.

Obtain the particular solution by taking a
uess by the form of RHS, i.e. f(n).

Constant q Constant d
Linear equation q, + q;k dy+dk

q.ak d.ak

Algorithm for solving non-

homogeneous recurrences

If RHS involves an exponential with base a,
where a is a characteristic root with
multiplicity p, then multiply particular
solution by k¥, where k is the index of
recurrence.

Substitute your guess into the recurrence
relation.

Sum up the homogeneous solution and the
particular solution to get the general solution.

Use initial conditions to evaluate constants.

Solving non—homogeneous

recurrences
[

f(k) + 5f(k — 1) =9 ...(Q), initial condition f(0) = 6

Now;, the homogeneous characteristic equation is: a+ 5 = 0, So, a = -5
Thus the homogeneous solution is: f(k) = b(-5) ... (ii)

Since f(n) = 9, we guess that the particular solution is d.
Substitutingin (1), d + 5d =9, ie.d =3/2 ... (iil)

Using (ii) + (iii) as the general solution we get
fk) = b(-5) + 3/2
By initial conditions: 6 =b + 3/2,1.e. b = 9/2

Hence, (k) = 9/2(-5)x+ 3/2

Solving non—homogeneous

recurrences
[

f(k) —9f(k—1)+20f(k —2) = 2. sk (i), initial condition f(0) = 1, f(1) = 60

Now; the homogeneous characteristic equation is:
& - 9a+ 20 = 0, i.e. characteristicrootsarea =4, 5
Thus the homogeneous solution is: f(k) = b,(4)* + b,(5)*... (ii)

Since f(n) = 2.5%, we guess that the particular solution is d.5*

But since 5 is a characteristic root with multiplicity 1, we multiply the particular
solution by n, thus getting dk. 5%

Substitutingin (i), dk. 5% —9d(k - 1). 5%t + 20d(k — 2). 5%"2 = 2. 5%
So, d = 10, and particular solution is 10k. 5k ... (ii1)

Using (ii) + (iii) as the general solution, we get
k) = b,(4)* + b,(5)* + 10k. 5%
Apply initial conditions to solve for b, & b,

Solving the Tower-of-Hanoi

recurrence relation
[

T(n) =2T(n—1) + 1 ...(i), initial condition T(1) = 1

Now; the homogeneous characteristic equation is:
a-2=01ea=2
Thus the homogeneous solution is: T(n) = b(2)" ... (ii)

Since RHS = 1, we guess that the particular solution is d.
Substitutingin (i), d -2d =1,ie.d=-1 ... (iii)

Using (ii) + (iii) as the general solution, we get
T(n)=b2)" -1
By initial conditions: b=1

Hence, T(n) =2" - 1

Rfmember that we needed 7 steps for 3 disks, which matches with our solution since
2 -1=7.

Recursion: Binary Search
.

bool bsearch(int a[|, int first, int last, int key)

{
if (key < al[first] | | key > a[last]) return false; // not found
int mid = (first + last) /' 2;
if (a[mid] > key) return bsearch(a, first, mid - 1, key);
else if (a[mid] < key) return bsearch(a, mid + 1, last, key);
else return true; //a[mid] == key

/

~
=G
| | V4

' - How to find the running time of such an algorithm?

Recursion: Binary Search
.

bool bsearch(int af], int first, int last, int key)

{
if (key < alfirst] | | key > a[last]) return false; // not found
int mid = (first + last) / 2;
if (a[mid] > key) return bsearch(a, first, mid - 1, key);
else if (a[mid] < key) return bsearch(a, mid + 1, last, key);
else return true; // a[mid] == key

]

*Let T(n) be the time taken for input size n

*At each stage the algorithm divides the list of numbers in 2 halves
*Then it tries to find the key in the half it is likely to be present, by using
binary search on that half

*T(n/2) would be the time taken for any of the halves

*Finding the value of the mid (first + last) / 2 would take O(1) time
*Hence, T(n) = T(n/2) + 1

Recursion

e
We observed that the running time of the binary
secarch algorithm can be expressed by the
recurrence relation.

T(n) - T(/2) + 1
A more generic form of this equation is.

T(n) - aT(n/b) + f(n), a>=1,b>1
This form of recurrence relation is observed in
many recursive algorithms

Recursion

.00
T(n) - a.T(n/b) + f(n), a>=1,b>1
In the analysis of a recursive algorithm, the
constants and function take the following
significance:
o n = size of the problem
o a = number of sub-problems in the recursion
o n/b = size of each sub-problem
o f(n) - cost of work done outside recursive calls

Observe the recurrence relation of binary search:
T(n) =T(n/2) +1

Recursion: Master Theorem

T(n) =a.T(n/b) + f(n), a>=1,b>1
T(n) can be bounded as follows:

e If f(n) = O(n'°8,@-#), >0
e Then, T(n) = O(n'°g,@)

e If f(n) = O(nlog,(D)
e Then, T(n) = 0(n'°8,@.1g(n))

e And a.f(n/b) <= c.f(n), c<1

e If f(n) = Q(nlog,@+2) >0
e Then, T(n) = O(f(n))

Recursion: T(n) = a.T(n/b) + f(n)

In each of the cases we are comparing f(n)
with nlog, (a)

-f(n) — O(nlogb(a) —s), >0

e f(n) is polynomially smaller than n'°8,(® by
a factor >0

e Then, T(n) = O(nl'°8,@)

Recursion: T(n) = a.T(n/b) + f(n)

In each of the cases we are comparing f(n)
with nlog,(a)

o If f(n) = Q(nlog,(@) +¢&) €>0 and
a.f(n/b) <= c.f(n), c<1

o f(n) is polynomially larger than n'°8,(by a
factor €>0
e Then, T(n) = 0(f(n))

Recursion: T(n) = a.T(n/b) + f(n)

In each of the cases we are comparing f(n)
with nlog, (@)

o If f(n) = O(n'eg,(a))

o f(n) and n'°8,® are of the same size,
e Then, T(n) = 0(n'°8,@.1g(n))
|multiply by a logarithmic factor lg(n) |

Recursion: Applying Master
Method

T(n) =8T(n/2) + 1001°
We havea =86 b =2

log,(a) =3
10803 — 3

f(n) =100n° = 0(1¥) = O0(n’1)
Hence, f(n) = O(**@ %), e=1
By, case 1 of Master Method
I'(n) =0(1r’)

Recursion: Applying Master
Method

T(n) =2T(n/2) + 10n
We havea=2 b =2

log,(a) =1

/
Hos@ —_ 1

f(n) =10n =0O(n)
Hence, by case 2 of Master Method
1(n) =0(nlg(n))

Recursion: Applying Master
Method

T(n) =2T(n/2) + n?
We havea=2 b =2

log,(a) = 1
n]ogb(a) =171

f(n) =n? =n't!
So, f(n) = Q'@), e=1
afin/b)=2f(n/2) =2 (n°/4)

= /2<=cf(n) c=1/2
Hence, by case 3 of Master Method
I(n) = 0(1r)

Recursion: Applying Master
Method

T(n) = 2T(Vn) + 1
Can we solve this recurrence by applying
the master method?

5 Solution: Re-arrange the variables

Recursion: Applying Master
Method

T(n) =2T(Vn) + 1

Letm =lg(n), ie.n=2"

T(2m) =2T(2"7%) + 1

Let T(2") =5(m)

Then we can re-write the recurrence as:
S(m) =25(m/2) + 1

m]ogb(a) =m

f(m) = 1= 0(m*1)

Hence, f{m) = O(m'°8,(&)-¢), g=1
By, case 1 of Master Method
S(m) = 0(m)

Therefore, T(n) = O(lg(n))

Recursion: Applying Master
Method

For the binary search example:
We had, T(n) =T(n/2) +1
Let us try to solve it using the master method

In thiscase:a=1, b =2
log,(a) =0
n]ogb(a) =nl=1
f(n) =1
= O(18,)
Hence, by case 2 of Master Method
I'(n) = 0(1.1g(n)) = O(lg(n))

Recursion: T(n) = a.T(n/b) + f(n)
e
The Master Method is not applicable if

f(n) is smaller than n'°8,(® but not polynomially
smaller

Example: T(n) = 2T(n/2) + n/log(n)

f(n) is larger than n'°8,(but not polynomially
larger

Example: T(n) = 2T(n/2) + n*log(n)

THANK YOI1

