

Divide & Conquer

Divide & Conquer

- ▶ The Divide & Conquer approach breaks down the problem into multiple smaller sub-problems, solves the sub-problems recursively, then combines the solutions of the sub-problems to create a solution for the original problem.
- ▶ The steps involved are:
 1. Divide the problem into number of sub-problems
 2. Conquer the sub-problems by solving them recursively
 3. Combine the solution of the sub-problems to solve the original problem

Divide & Conquer : Merge Sort

- ▶ We need to sort a list of n numbers.
- ▶ The merge sort algorithm uses divide & conquer strategy to solve this problem in the following way:
- ▶ The steps involved are:
 1. Divide the n element sequence into 2 sub-sequences of $n/2$ elements each
 2. Conquer sort the sub-sequences recursively
 3. Combine merge the two sorted sub-sequences to form the end result

Divide & Conquer: Merge Sort

```
void mergesort(int a[ ], int l, int r)
{
    if (l < r)
    {
        int m = (l + r) / 2;          // divide
        mergesort(a, l, m);          // conquer 1st sub-sequence
        mergesort(a, m+1, r);        // conquer 2nd sub-sequence
        merge(a, l, m, r);          // combine
    }
}
```

Divide & Conquer: Merge Sort

```
void merge(int a[ ], int l, int m, int r)
{
    int n1 = m - l + 1;
    int n2 = r - m;
    int L[n1 + 2];                      // create arrays L & R
    int R[n2 + 2];
    for (int i = 1; i <= n1; i++)
    {
        L[i] = a[l + i - 1];           // initialize L with elements a[l] to a[m]
    }
    for (int j = 1; j <= n2; j++)
    {
        R[j] = a[m + j];              // initialize R with elements a[m+1] to a[r]
    }
    L[n1 + 1] = R[n2 + 1] = MAXINT;      // #define MAXINT = 65536
    int p = 1;
    int q = 1;
    for (int k = l; k <= r; k++)
        a[k] = (L[p] <= R[q]) ? L[p++] : R[q++];
}
```

Divide & Conquer : Merge Sort

- ▶ If $a = \{5, 12, 17, 6\}$ Function calls are in the following order
- ▶ `mergesort(a, 1, 4)`
 - ▶ `mergesort(a, 1, 2)`
 - ▶ `mergesort(a, 1, 1)`
 - ▶ `mergesort(a, 2, 2)`
 - ▶ `merge(a, 1, 1, 2)`
 - ▶ $a = 5 \ 12 \ 17 \ 6$
 - ▶ `mergesort(a, 3, 4)`
 - ▶ `mergesort(a, 3, 3)`
 - ▶ `mergesort(a, 4, 4)`
 - ▶ `merge(a, 3, 3, 4)`
 - ▶ $a = 5 \ 12 \ 6 \ 17$
 - ▶ `merge(a, 1, 2, 4)`
 - ▶ $a = 5 \ 6 \ 12 \ 17$
- ▶ $a = 5 \ 6 \ 12 \ 17$

```
void mergesort(int a[], int l, int r)
{
    if (l < r)
    {
        int m = (l + r) / 2;
        mergesort(a, l, m);
        mergesort(a, m+1, r);
        merge(a, l, m, r);
    }
}
```

Divide & Conquer : Merge Sort Analysis

- Let $T(n)$ be the running time for input size n
- When $n = 1$, the problem can be solved in constant time
 - ▣ $T(n) = \Theta(1)$, when $n = 1$
- When $n > 1$ we divide the problem into 2 sub-problems, each of size $n/2$, which contributes to $2T(n/2)$ running time
- Merging an n elements takes $\Theta(n)$ time
 - ▣ $T(n) = 2T(n/2) + \Theta(n)$, when $n > 1$
- To estimate the running time of merge sort for an n element sequence we have to solve this recurrence

Divide & Conquer : Merge Sort Analysis

- $T(n) = 2T(n/2) + \Theta(n)$
- Is of the form $T(n) = a.T(n/b) + f(n)$, $a = 2$ & $b = 2$
- $\log_b(a) = 1$
- $n^{\log_b(a)} = n^1 = n$
- $f(n) = \Theta(n) = \Theta(n^{\log_b(a)})$

- Hence, by case 2 of the master method
- $T(n) = \Theta(n \lg(n))$

Quick Sort

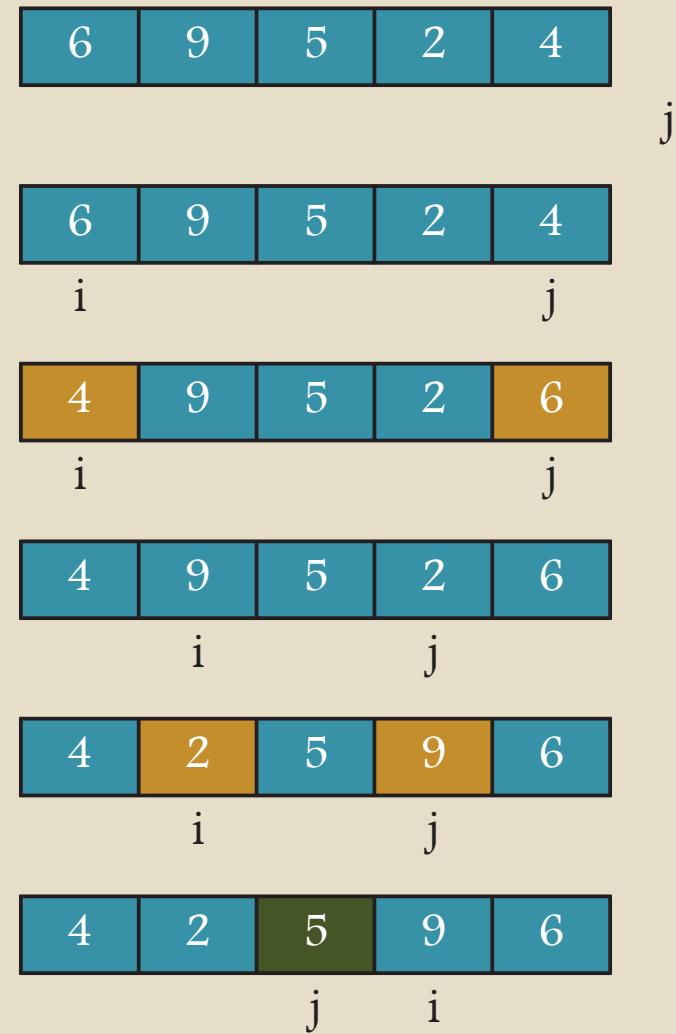
- ▶ Quick sort, like merge sort is based on divide and conquer technique for sorting an array $a[1 \dots r]$
- ▶ The steps involved are:
 1. **Divide** the array $a[1 \dots r]$ is partitioned into two sub-components $a[1 \dots p]$ and $a[p + 1 \dots r]$, such that every element of $a[1 \dots p]$ is less than equal to every element of $a[p + 1 \dots r]$
 2. **Conquer** The sub-arrays $a[1 \dots p]$ and $a[p + 1 \dots r]$ are sorted by recursive calls to quicksort
 3. **Combine** Since the sub-arrays are sorted in place no overhead of combining them is required

Quick Sort

```
void qsort(int a[], int l, int r)
{
    if (l < r)
    {
        int p = partition(a, l, r);
        qsort(a, l, p);
        qsort(a, p + 1, r);
    }
}
```

Quick Sort

```
int partition(int a[], int p, int q)
{
    int x = a[p];
    int i = p - 1;
    int j = q + 1;
    while (1) {
        do {
            i++;
        } while (a[i] < x);
        do {
            j--;
        } while (a[j] > x);
        if (i < j) swap(a[i], a[j]);
        else return j;
    }
}
```



Quick Sort: Worst Case Analysis

- ▶ The worst case for quick sort is when partition function produces one sub-array with $(n - 1)$ elements and another sub-array with 1 element. If this unbalanced partitioning happens at every step of the algorithm we call it the worst case quick sort behavior.
- ▶ Since partitioning takes $\Theta(n)$ time and $T(1) = \Theta(1)$, the recurrence for the worst case running time is
 - ▶
$$\begin{aligned} T(n) &= T(n - 1) + \Theta(n) \\ &= T(n - 2) + \Theta(n - 1) + \Theta(n) \\ &= \dots \\ &= T(1) + \dots + \Theta(n - 1) + \Theta(n) \\ &= \Theta(1) + \dots + \Theta(n - 1) + \Theta(n) \\ &= \Theta(1 + 2 + \dots + n) \\ &= \Theta(n^2) \end{aligned}$$

Quick Sort: Best Case Analysis

- The best case for quick sort is when partition function produces two sub-arrays with $(n/2)$ elements each.
- The recurrence is then
- $T(n) = 2T(n/2) + \Theta(n)$
- By case 2 of the master method, the solution is:
- $T(n) = \Theta(n \lg(n))$

A close-up photograph of a red pencil and a clear ruler resting on a white grid notebook. The pencil is positioned diagonally, pointing upwards and to the right. The ruler is placed horizontally across the top of the grid lines. The background is a warm, out-of-focus yellow.

RECURSION

Recursive Functions

- A recursive function is one that makes a call to itself.
- For example:
 - We can define factorial of a positive integer n , as
 - $\text{Factorial}(n) = 1$, when $n = 0, 1$
 - $\text{Factorial}(n) = n * \text{Factorial}(n - 1)$, when $n > 1$
- Notice that we are calculating $\text{Factorial}(n)$ in terms of $\text{Factorial}(n - 1)$.
- In other words, to find $\text{Factorial}(5)$ we need to find $\text{Factorial}(4)$ and multiply the result by 5.
- To find $\text{Factorial}(4)$, we need to find $\text{Factorial}(3)$ and multiply the result by 4, and so on.

Recursion Implementation

- A recursive factorial function looks like this:

```
unsigned int factorial(unsigned int n) {  
    if (n <= 1) return 1;  
    else return n * factorial(n - 1);  
}
```

- Recursive function calls are not executed immediately.
- They are placed on a stack until the condition that terminates recursion is encountered.
- The function calls are executed in reverse order, as they are popped off the stack.

Example: factorial(3)

- Let us consider the invocation of factorial(3).
- To compute $3 * \text{factorial}(2)$ in the else statement, the computation of factorial(3) is suspended and factorial is invoked with $n = 2$.
- When computation of factorial(3) is suspended then the program state (i.e. local variables, program counter etc.) are pushed on recursion stack.
- Similarly invocation of factorial(2) is suspended, factorial is invoked with $n = 1$.
- factorial(1) returns 1, program state of factorial(2) is then popped off the stack to compute factorial(2).

```
unsigned int factorial(unsigned int n) {  
    if (n <= 1) return 1;  
    else return n * factorial(n - 1);  
}
```

factorial(2):
n=2

factorial(3):
n=3

stack

factorial(1) = 1

factorial(2) = 2 * factorial(1) = 2 * 1 = 2

factorial(3) = 3 * factorial(2) = 3 * 2 = 6

Recursion vs. Iteration

Recursion

```
unsigned int factorial(unsigned int n) {  
    if (n <= 1) return 1;  
    else return n * factorial(n - 1);  
}
```

- Usually slower, due to overhead of stack manipulation and function calls.
- Has the risk of stack overflow, for too many function calls.
- Some problems can be more easily solved by recursion.

Iteration

```
unsigned int factorial(unsigned int n) {  
    unsigned int result = 1;  
    while (n > 1) {  
        result *= n--;  
    }  
    return result;  
}
```

- Runs faster as assignments are usually less costly than function calls.

Tail Recursion

- **tail recursion** (or **tail-end recursion**) is a special case of recursion in which the last operation of the function, i.e. the tail call, is the recursive call.
- In other words there are no more operations after the function calls itself.
- Such recursions can be easily transformed to iterations.
- Replacing recursion with iteration, can drastically decrease the amount of stack space used and improve program efficiency.

Tail Recursion: Example

```
unsigned int factorial(unsigned int n) {  
    return tailFactorial(1, n);  
}
```

```
unsigned int tailFactorial(unsigned int result, unsigned int n) {  
    if (n <= 1) return result;  
    else return tailFactorial(n * result, n - 1);  
}
```

Tail Recursion & Iteration

Tail Recursion

```
unsigned int factorial(unsigned int n) {  
    return tailFactorial(1, n);  
}  
  
unsigned int tailFactorial(unsigned int result, unsigned int n) {  
    if (n <= 1) return result;  
    else return tailFactorial(n * result, n - 1);  
}
```

Iteration

```
unsigned int factorial(unsigned int n) {  
    unsigned int result = 1;  
    while (n > 1) {  
        result *= n--;  
    }  
    return result;  
}
```

Let us trace the execution of this program to calculate $\text{factorial}(3)$:

factorial(3)
tailFactorial(result = 1, n = 3)
tailFactorial(result = 3, n = 2)
tailFactorial(result = 6, n = 1)
return 6

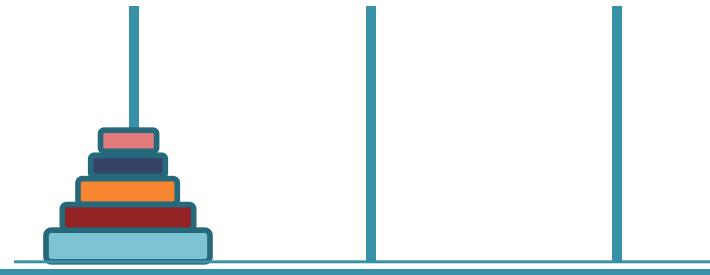
Look at how the variables change with each iteration while calculating $\text{factorial}(3)$:

factorial(3)
result = 1, n = 3
result = 3, n = 2
result = 6, n = 1
return 6

Tail Recursion & Iteration

- As we can see the variables result and n are identical for iterative and tail-recursive methods.
- Hence tail recursion and iteration are equivalent.
- Thus a recursive algorithm can be converted to a tail recursive algorithm.
- A tail recursive algorithm can in-turn be converted to a iterative algorithm.

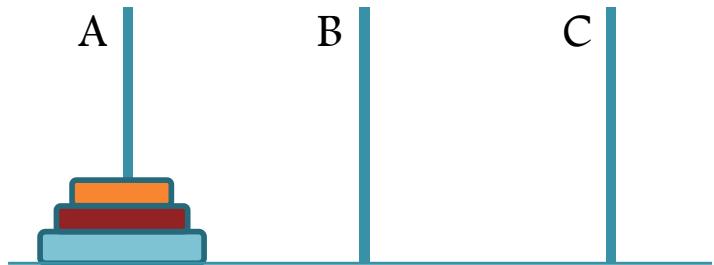
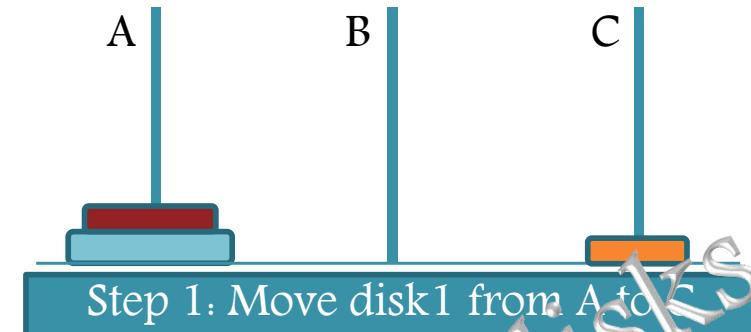
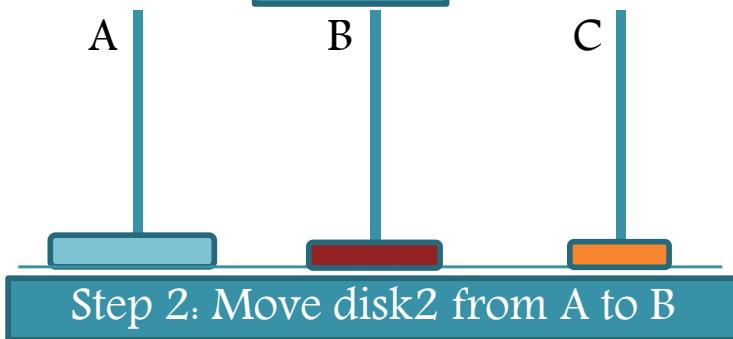
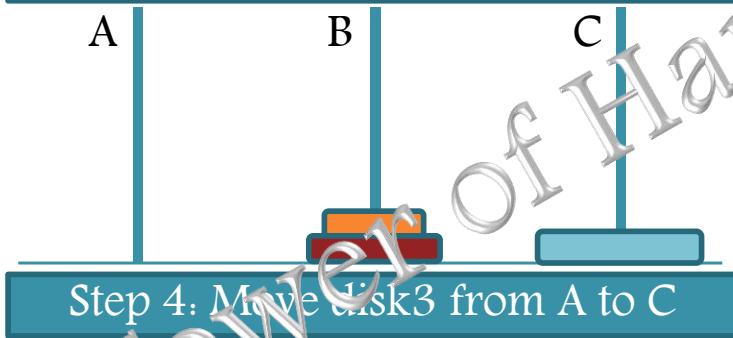
Tower of Hanoi



- It is a mathematical game, which consists of three towers, and a number of disks of different sizes which can slide onto any tower. The puzzle starts with the disks in a neat stack in ascending order of size on one tower, the smallest at the top, thus making a conical shape.
- The objective of the puzzle is to move the entire stack to another tower, obeying the following rules.
 - Only one disk may be moved at a time.
 - Each move consists of taking the upper disk from one of the towers and sliding it onto another tower, on top of the other disks that may already be present on that tower.
 - No disk may be placed on top of a smaller disk.

Recursive Solution

- A key to solving this puzzle is to recognize that it can be solved by breaking the problem down into a collection of smaller problems and further breaking those problems down into even smaller problems until a solution is reached. The following procedure demonstrates this approach.
 1. label the towers A, B, C—these labels may move at different steps
 2. let n be the total number of disks
 3. number the disks from 1 (smallest, topmost) to n (largest, bottommost)
 4. To move n disks from tower A to tower C:
 5. move $n-1$ disks from A to B. This leaves disc # n alone on tower A
 6. move disk # n from A to C
 7. move $n-1$ disks from B to C so they sit on disk # n
- The above is a recursive algorithm.



Recursive Algorithm

```
void dohanoi(int N, int from, int to, int via)
{
    if (N > 0)
    {
        dohanoi(N-1, from, via, to);
        printf ("move %d --> %d\n", from, to);
        dohanoi(N-1, via, to, from);
    }
}
```

Recurrence Relations

- Let $T(n)$ be the number of moves needed to solve the puzzle with n disks.
- The recursive solution involves moving $n - 1$ disks from one tower to another twice, making one additional move in between.
- Thus it follows that:
 - $T(n) = T(n - 1) + 1 + T(n - 1) = 2T(n - 1) + 1$
 - Intuitively, $T(1) = 1$
 - The equation above is called a **recurrence relation**.

n^{th} order linear recurrence relations

- Consider the following equation:

$$S(k) = c_1 S(k-1) + c_2 S(k-2) + \dots + c_n S(k-n) + f(n)$$

Where c_1, c_2, \dots, c_n are numbers and f is a numeric function.

- Such an equation is called an n^{th} order linear recurrence relation, if $c_n \neq 0$
- For example:

- $F_i - F_{i-1} - F_{i-2} = 0$... order 2
- $P(j) + 2P(j-3) = j^2$... order 3
- $a(n) = 2(a(n-1) + n))$... order 1

Homogeneous recurrence relations

- Consider the following equation:

$$S(n) = c_1 S(n-1) + c_2 S(n-2) + \dots + c_n S(n-n) + f(n)$$

- If $f(n) = 0$, for all n , then this equation is called a homogeneous recurrence relation.
- For example, say:

$$S(k) - 7S(k-1) + 12S(k-2) = 0, S(0) = S(1) = 4 \dots (i)$$

Let $S(k) = b \cdot a^k$ be the solution, where a, b are non-zero constants

Then $S(k-1) = b \cdot a^{k-1}, S(k-2) = b \cdot a^{k-2}$

Substituting in (i), $b \cdot a^k - 7b \cdot a^{k-1} + 12b \cdot a^{k-2} = 0$

Dividing by $b \cdot a^{k-2}$, $a^2 - 7a + 12 = 0 \dots (ii)$

This equation is called the characteristic equation of the recurrence.

Solving (ii) yields, $(a - 3)(a - 4) = 0$

Thus the general solution is : $S(k) = b_1 \cdot 3^k + b_2 \cdot 4^k$

Using the initial conditions, $S(0) = S(1) = 4$, we get $b_1 = 12, b_2 = -8$

Thus, $S(k) = 12 \cdot 3^k - 8 \cdot 4^k$

Algorithm for solving homogeneous recurrences

1. Write the characteristic equation of the recurrence Consider the following equation.

$$S(k) + c_1S(k-1) + c_2S(k-2) + \dots + c_nS(k-n) = 0$$

$$\text{Which is: } a^n + c_1a^{n-1} + \dots + c_n = 0$$

2. Find all the roots of the characteristic equation.
3. If there are n characteristic roots a_1, \dots, a_n then general solution is

$$S(n) = b_1 \cdot a_1^k + b_2 \cdot a_2^k + \dots + b_n \cdot a_n^k$$

Algorithm for solving homogeneous recurrences

4. If there are fewer than n characteristic roots then at least one root is a multiple root. If a_j is a double root then $b_j a_j^k$ is replaced by $(b_{j0} + b_{j1} k) \cdot a_j^k$
5. In general, if a_j is a root of multiplicity p , then $b_j a_j^n$ is replaced by $(b_{j0} + b_{j1} n + \dots + b_{j(p-1)} \cdot k^{p-1}) \cdot a_j^k$
6. If n initial conditions are given then form n linear equations and solve.

Solving homogeneous recurrences

$$f(n) = f(n - 1) + 8f(n - 2) - 12f(n - 3) \dots (i)$$

initial conditions: $f(0) = 0, f(1) = 1, f(2) = 3$

We have $f(n) - f(n - 1) - 8f(n - 2) + 12f(n - 3) = 0$

The characteristic equation of this recurrence relation is:

$$a^3 - a^2 - 8a + 12 = 0 \dots (ii)$$

Solving (ii) we get, $(a - 2)^2 \cdot (a + 3) = 0$

Thus the characteristic roots are: $a = 2, a = 2, a = -3 \dots (iii)$

Since $a = 2$ is a characteristic root with multiplicity 2, we write

$$f(n) = (b_0 + b_1 \cdot n) \cdot 2^n + b_2(-3)^n$$

Applying the initial conditions, we can get the values of b_0, b_1 & b_2

Non-homogeneous recurrence relations

- Consider the following equation:

$$S(k) + c_1S(k - 1) + c_2S(k - 2) + \dots + c_nS(k - n) = f(n)$$

- If $f(n) \neq 0$, for all n , then this equation is called a non-homogeneous recurrence relation.
- For example, $T(n) = 2T(n - 1) + 1$

Algorithm for solving non-homogeneous recurrences

1. Write the associated homogeneous equation by putting the RHS, i.e. $f(n) = 0$, solve this using previous algorithm. Call this the homogeneous solution.
2. Obtain the particular solution by taking a guess by the form of RHS, i.e. $f(n)$.

$f(n)$	Particular Solution
Constant q	Constant d
Linear equation $q_0 + q_1 k$	$d_0 + d_1 k$
$q \cdot a^k$	$d \cdot a^k$

Algorithm for solving non-homogeneous recurrences

4. If RHS involves an exponential with base a , where a is a characteristic root with multiplicity p , then multiply particular solution by k^p , where k is the index of recurrence.
5. Substitute your guess into the recurrence relation.
6. Sum up the homogeneous solution and the particular solution to get the general solution.
7. Use initial conditions to evaluate constants.

Solving non-homogeneous recurrences

$$f(k) + 5f(k - 1) = 9 \dots (i), \text{ initial condition } f(0) = 6$$

Now, the homogeneous characteristic equation is: $a + 5 = 0$, So, $a = -5$
Thus the homogeneous solution is: $f(k) = b(-5)^k \dots (ii)$

Since $f(n) = 9$, we guess that the particular solution is d .
Substituting in (i), $d + 5d = 9$, i.e. $d = 3/2 \dots (iii)$

Using (ii) + (iii) as the general solution we get

$$f(k) = b(-5)^k + 3/2$$

By initial conditions: $6 = b + 3/2$, i.e. $b = 9/2$

$$\text{Hence, } f(k) = 9/2(-5)^k + 3/2$$

Solving non-homogeneous recurrences

$$f(k) - 9f(k-1) + 20f(k-2) = 2 \cdot 5^k \dots (i), \text{ initial condition } f(0) = 1, f(1) = 60$$

Now, the homogeneous characteristic equation is:

$$a^2 - 9a + 20 = 0, \text{ i.e. characteristic roots are } a = 4, 5$$

Thus the homogeneous solution is: $f(k) = b_0(4)^k + b_1(5)^k \dots (ii)$

Since $f(n) = 2 \cdot 5^k$, we guess that the particular solution is $d \cdot 5^k$

But since 5 is a characteristic root with multiplicity 1, we multiply the particular solution by n , thus getting $dk \cdot 5^k$

$$\text{Substituting in (i), } dk \cdot 5^k - 9d(k-1) \cdot 5^{k-1} + 20d(k-2) \cdot 5^{k-2} = 2 \cdot 5^k$$

So, $d = 10$, and particular solution is $10k \cdot 5^k \dots (iii)$

Using (ii) + (iii) as the general solution, we get

$$f(k) = b_0(4)^k + b_1(5)^k + 10k \cdot 5^k$$

Apply initial conditions to solve for b_0 & b_1

Solving the Tower-of-Hanoi recurrence relation

$$T(n) = 2T(n - 1) + 1 \dots (i), \text{ initial condition } T(1) = 1$$

Now, the homogeneous characteristic equation is:

$$a - 2 = 0, \text{ i.e. } a = 2$$

Thus the homogeneous solution is: $T(n) = b(2)^n \dots (ii)$

Since $\text{RHS} = 1$, we guess that the particular solution is d .

Substituting in (i), $d - 2d = 1$, i.e. $d = -1 \dots (iii)$

Using (ii) + (iii) as the general solution, we get

$$T(n) = b(2)^n - 1$$

By initial conditions: $b=1$

Hence, $T(n) = 2^n - 1$

Remember that we needed 7 steps for 3 disks, which matches with our solution since $2^3 - 1 = 7$.

Recursion: Binary Search

```
bool bsearch(int a[ ], int first, int last, int key)
{
    if (key < a[first] || key > a[last]) return false; // not found
    int mid = (first + last) / 2;
    if (a[mid] > key) return bsearch(a, first, mid - 1, key);
    else if (a[mid] < key) return bsearch(a, mid + 1, last, key);
    else return true; // a[mid] == key
}
```


How to find the running time of such an algorithm?

Recursion: Binary Search

```
bool bsearch(int a[ ], int first, int last, int key)
{
    if (key < a[first] || key > a[last]) return false; // not found
    int mid = (first + last) / 2;
    if (a[mid] > key) return bsearch(a, first, mid - 1, key);
    else if (a[mid] < key) return bsearch(a, mid + 1, last, key);
    else return true; // a[mid] == key
}
```

- Let $T(n)$ be the time taken for input size n
- At each stage the algorithm divides the list of numbers in 2 halves
- Then it tries to find the key in the half it is likely to be present, by using binary search on that half
- $T(n/2)$ would be the time taken for any of the halves
- Finding the value of the mid $(first + last) / 2$ would take $O(1)$ time
- Hence, $T(n) = T(n/2) + 1$

Recursion

- We observed that the running time of the binary search algorithm can be expressed by the recurrence relation:

$$T(n) = T(n/2) + 1$$

- A more generic form of this equation is:

$$T(n) = a \cdot T(n/b) + f(n), \quad a \geq 1, b > 1$$

- This form of recurrence relation is observed in many recursive algorithms

Recursion

- $T(n) = a \cdot T(n/b) + f(n)$, $a \geq 1, b > 1$
- In the analysis of a recursive algorithm, the constants and function take the following significance:
 - n = size of the problem
 - a = number of sub-problems in the recursion
 - n/b = size of each sub-problem
 - $f(n)$ = cost of work done outside recursive calls

Observe the recurrence relation of binary search:

$$T(n) = T(n/2) + 1$$

Recursion: Master Theorem

- $T(n) = a.T(n/b) + f(n)$, $a \geq 1, b > 1$
- $T(n)$ can be bounded as follows:

1

- If $f(n) = O(n^{\log_b(a) - \varepsilon})$, $\varepsilon > 0$
- Then, $T(n) = \Theta(n^{\log_b(a)})$

2

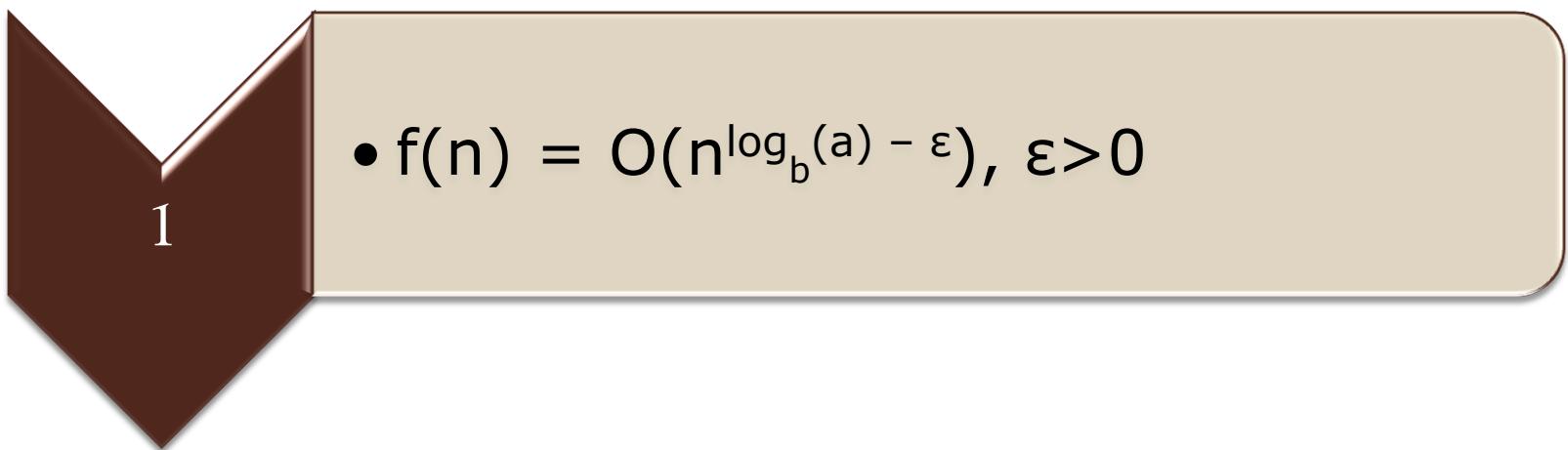
- If $f(n) = \Theta(n^{\log_b(a)})$
- Then, $T(n) = \Theta(n^{\log_b(a)} \cdot \lg(n))$

3

- If $f(n) = \Omega(n^{\log_b(a) + \varepsilon})$, $\varepsilon > 0$
- And $a.f(n/b) \leq c.f(n)$, $c < 1$
- Then, $T(n) = \Theta(f(n))$

Recursion: $T(n) = a.T(n/b) + f(n)$

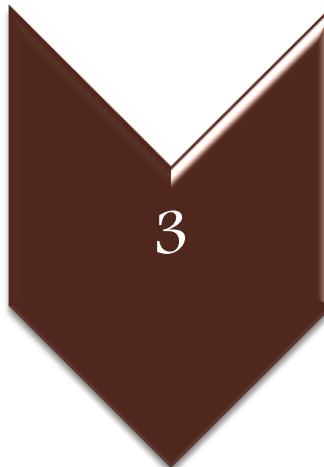
- In each of the cases we are comparing $f(n)$ with $n^{\log_b(a)}$



- $f(n)$ is polynomially smaller than $n^{\log_b(a)}$ by a factor $\varepsilon > 0$
- Then, $T(n) = \Theta(n^{\log_b(a)})$

Recursion: $T(n) = a.T(n/b) + f(n)$

- In each of the cases we are comparing $f(n)$ with $n^{\log_b(a)}$

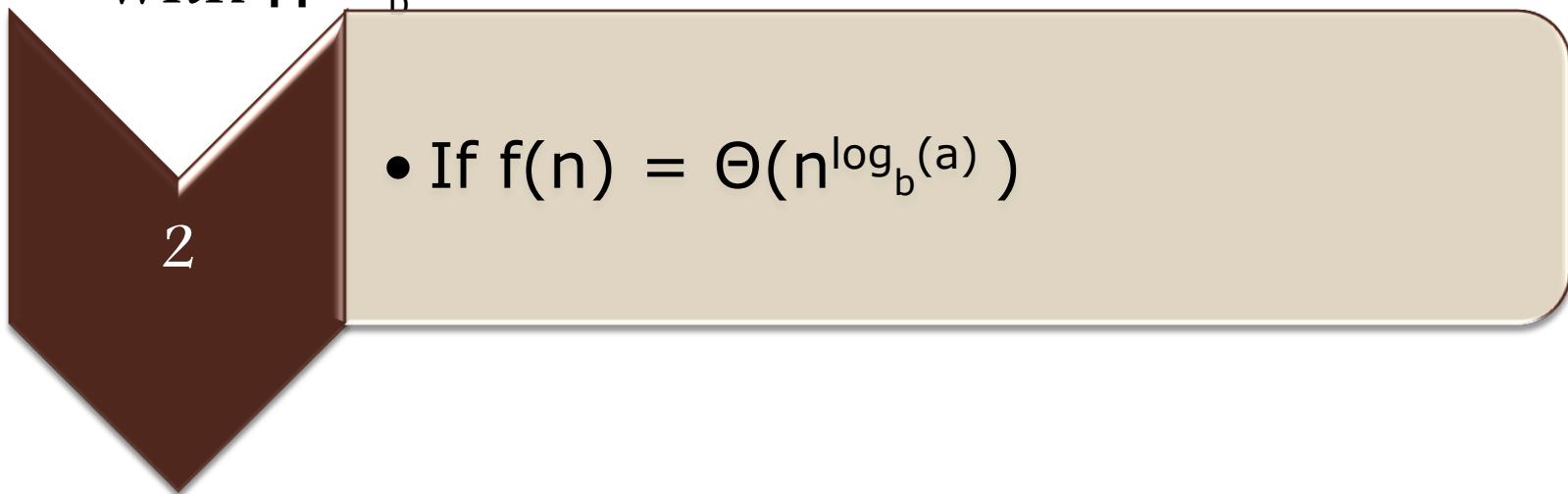


- If $f(n) = \Omega(n^{\log_b(a) + \varepsilon})$, $\varepsilon > 0$ and $a.f(n/b) \leq c.f(n)$, $c < 1$

- $f(n)$ is polynomially larger than $n^{\log_b(a)}$ by a factor $\varepsilon > 0$
- Then, $T(n) = \Theta(f(n))$

Recursion: $T(n) = a.T(n/b) + f(n)$

- In each of the cases we are comparing $f(n)$ with $n^{\log_b(a)}$



- $f(n)$ and $n^{\log_b(a)}$ are of the same size,
- Then, $T(n) = \Theta(n^{\log_b(a)} \cdot \lg(n))$
[multiply by a logarithmic factor $\lg(n)$]

Recursion: Applying Master Method

$$T(n) = 8T(n/2) + 100n^2$$

We have $a = 8, b = 2$

$$\log_b(a) = 3$$

$$n^{\log_b(a)} = n^3$$

$$f(n) = 100n^2 = O(n^2) = O(n^{3-1})$$

$$\text{Hence, } f(n) = O(n^{\log_b(a) - \varepsilon}), \varepsilon=1$$

By, case 1 of Master Method

$$T(n) = \Theta(n^3)$$

Recursion: Applying Master Method

$$T(n) = 2T(n/2) + 10n$$

We have $a = 2, b = 2$

$$\log_b(a) = 1$$

$$n^{\log_b(a)} = n^1$$

$$f(n) = 10n = \Theta(n)$$

Hence, by case 2 of Master Method

$$T(n) = \Theta(n \lg(n))$$

Recursion: Applying Master Method

$$T(n) = 2T(n/2) + n^2$$

We have $a = 2, b = 2$

$$\log_b(a) = 1$$

$$n^{\log_b(a)} = n^1$$

$$f(n) = n^2 = n^{1+1}$$

$$\text{So, } f(n) = \Omega(n^{\log_b(a) + \varepsilon}), \varepsilon=1$$

$$\begin{aligned} a.f(n/b) &= 2f(n/2) &= 2 \cdot (n^2 / 4) \\ & &= n^2 / 2 \leq c.f(n), c=1/2 \end{aligned}$$

Hence, by case 3 of Master Method

$$T(n) = \Theta(n^2)$$

Recursion: Applying Master Method

- $T(n) = 2T(\sqrt{n}) + 1$

Can we solve this recurrence by applying the master method?

Solution: Re-arrange the variables

Recursion: Applying Master Method

$$T(n) = 2T(\sqrt{n}) + 1$$

Let $m = \lg(n)$, i.e. $n = 2^m$

$$T(2^m) = 2T(2^{m/2}) + 1$$

Let $T(2^m) = S(m)$

Then we can re-write the recurrence as:

$$S(m) = 2S(m/2) + 1$$

$$m^{\log_b(a)} = m$$

$$f(m) = 1 = O(m^{1-1})$$

$$\text{Hence, } f(m) = O(m^{\log_b(a) - \varepsilon}), \varepsilon=1$$

By, case 1 of Master Method

$$S(m) = \Theta(m)$$

$$\text{Therefore, } T(n) = \Theta(\lg(n))$$

Recursion: Applying Master Method

- For the binary search example:
- We had, $T(n) = T(n/2) + 1$
- Let us try to solve it using the master method

In this case: $a = 1, b = 2$

$$\log_b(a) = 0$$

$$n^{\log_b(a)} = n^0 = 1$$

$$\begin{aligned}f(n) &= 1 \\&= \Theta(n^{\log_b(a)})\end{aligned}$$

Hence, by case 2 of Master Method

$$T(n) = \Theta(1 \cdot \lg(n)) = \Theta(\lg(n))$$

Recursion: $T(n) = a.T(n/b) + f(n)$

- The Master Method is not applicable if
- $f(n)$ is smaller than $n^{\log_b(a)}$ but not polynomially smaller
- Example: $T(n) = 2T(n/2) + n/\log(n)$
- $f(n)$ is larger than $n^{\log_b(a)}$ but not polynomially larger
- Example: $T(n) = 2T(n/2) + n^*\log(n)$

THANK YOU!