
Divide & Conquer 



Divide & Conquer 

The Divide & Conquer approach breaks down the 
problem into multiple smaller sub-problems, solves 
the sub-problems recursively, then combines the 
solutions of the sub-problems to create a solution 
for the original problem. 
The steps involved are: 

11. Divide the problem into number of sub-problems 
2. Conquer the sub-problems by solving them recursively 
3. Combine the solution of the sub-problems to solve the 

original problem 



Divide & Conquer : Merge Sort 

We need to sort a list of n numbers. 
The merge sort algorithm uses divide & conquer 
strategy to solve this problem in the following way: 
The steps involved are: 

11. Divide the n element sequence into 2 sub-sequences of 
n/2 elements each 

2. Conquer  sort the sub-sequences recursively 
3. Combine merge the two sorted sub-sequences to form the 

end result 



Divide & Conquer: Merge Sort 

void mergesort(int a[ ], int l, int r) 
{ 
 if  (l < r) 
 { 
  int m = (l + r) / 2;  // divide 
  mergesort(a, l, m);  // conquer 1st sub-sequence 
  mergesort(a, m+1, r); // conquer 2nd sub-sequence 
  merge(a, l, m, r);  // combine 
 } 
} 



Divide & Conquer: Merge Sort 

void merge(int a[ ], int l, int m, int r) 
{ 
 int n1 = m - l + 1; 
 int n2 = r - m; 
 int L[n1 + 2];  // create arrays L & R 
 int R[n2 + 2]; 
 for (int i = 1; i <= n1; i++) 
 { 
  L[i] = a[l + i - 1]; // initialize L with elements a[l] to a[m] 
 } 
 for (int j = 1; j <= n2; j++) 
 { 
  R[j] = a[m + j]; // initialize R with elements a[m+1] to a[r] 
 } 
 L[n1 + 1] = R[n2 + 1] = MAXINT; // #define MAXINT = 65536  
 int p = 1; 
 int q = 1; 
 for (int k = l; k <= r; k++)  
  a[k] = (L[p] <= R[q]) ? L[p++] : R[q++];  
} 



Divide & Conquer : Merge Sort 

If a = {5, 12, 17, 6} Function calls are in the following order 
mergesort(a, 1, 4) 

mergesort(a, 1, 2) 
mergesort(a, 1, 1) 
mergesort(a, 2, 2) 
merge(a, 1, 1, 2) 
a = 5 12 17 6 

mergesort(a, 3, 4) 
mergesort(a, 3, 3) 
mergesort(a, 4, 4) 
merge(a, 3, 3, 4) 
a = 5 12 6 17 

merge(a, 1, 2, 4) 
a = 5 6 12 17 

a = 5 6 12 17 
 

void mergesort(int a[ ], int l, int r) 
{ 
 if  (l < r) 
 { 
  int m = (l + r) / 2;   
  mergesort(a, l, m);   
  mergesort(a, m+1, r);  
  merge(a, l, m, r);   
 } 
} 



Divide & Conquer : Merge Sort 
Analysis 
Let T(n) be the running time for input size n 
When n = 1, the problem can be solved in constant 
time 

T(n) = Θ(1), when n = 1 
When n > 1 we divide the problem into 2 sub-
problems, each of size n/2, which contributes to 
2T(n/2) running time 
Merging an n elements takes Θ(n) time 

T(n) = 2T(n/2) + Θ(n), when n > 1 
To estimate the running time of merge sort for an n 
element sequence we have to solve this recurrence 



Divide & Conquer : Merge Sort 
Analysis 
T(n) = 2T(n/2) + Θ(n)  
Is of the form T(n) = a.T(n/b) + f(n), a = 2 & b = 2 
logb(a) = 1 
nlogb(a) = n1 = n 
f(n) = Θ(n) = Θ(nlogb(a)) 
 
Hence, by case 2 of the master method 
TT(n) = Θ(n.lg(n)) 
 



Quick Sort 

Quick sort, like merge sort is based on divide and 
conquer technique for sorting an array a[l … r]  
The steps involved are: 

11. Divide the array a[l … r] is partitioned into two sub-
components a[l … p] and a[p + 1 … r], such that every 
element of a[l … p] is less than equal to every element of 
a[p + 1 … r] 

2. Conquer  The sub-arrays a[l … p] and a[p + 1 … r] are 
sorted by recursive calls to quicksort 

3. Combine Since the sub-arrays are sorted in place no 
overhead of combining them is required 



Quick Sort 

void qsort(int a[], int l, int r) 
{ 
 if (l < r) 
 { 
  int p = partition(a, l, r); 
  qsort(a, l, p); 
  qsort(a, p + 1, r); 
 } 
} 



Quick Sort 

int partition(int a[], int p, int q) 
{ 
 int x = a[p]; 
 int i = p - 1; 
 int j = q + 1; 
 while (1) { 
  do { 
   i++; 
  } while (a[i] < x); 
  do { 
   j--; 
  } while (a[j] > x); 
  if (i < j) swap(a[i], a[j]); 
  else return j; 
 } 
} 
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Quick Sort: Worst Case Analysis 

The worst case for quick sort is when partition function 
produces one sub-array with (n – 1) elements and another 
sub-array with 1 element. If this unbalanced partitioning 
happens at very step of the algorithm we call it the worst 
case quick sort behavior. 
Since partitioning takes Θ(n) time and T(1) = Θ(1), the 
recurrence for the worst case running time is 
T(n) = T(n – 1) + Θ(n) 

  = T(n – 2) + Θ(n - 1) + Θ(n) 
  = … 
  = T(1) + … + Θ(n - 1) + Θ(n) 
  = Θ(1) + … + Θ(n - 1) + Θ(n)  
  = Θ(1 + 2 + … + n)           

  = Θ(n2) 



Quick Sort: Best Case Analysis 

The best case for quick sort is when partition 
function produces two sub-arrays with (n/2) 
elements each. 
The recurrence is then 
T(n) = 2T(n/2) + Θ(n) 
By case 2 of the master method, the solution is: 
T(n) = Θ(n.lg(n)) 



RECURSION 



Recursive Functions 

 A recursive function is one that manes a call to itself. 
 For example: 

 We can define factorial of a positive integer n, as 
 Factorial(n) = 1, when n = 0, 1 
 Factorial(n) = n * Factorial(n – 1), when n > 1 

 Notice that we are calculating Factorial(n) in terms of 
Factorial(n – 1). 

 In other words, to find Factorial(5) we need to find 
Factorial(4) and multiply the result by 5. 

 To find Factorial(4), we need to find Factorial(3) and 
multiply the result by 4, and so on. 



Recursion Implementation 

 A recursive factorial function loons line this: 
unsigned int factorial(unsigned int n) { 
 if (n <= 1) return 1; 
 else return n * factorial(n – 1); 
} 

 Recursive functions calls are not executed 
immediately.  

 They are placed on a stack until the condition that 
terminates recursion is encountered.  

 The function calls are executed in reverse order, 
as they are popped off the stack.  



factorial(1) = 1 

unsigned int factorial(unsigned int n) { 
 if (n <= 1) return 1; 
 else return n * factorial(n – 1); 
} 

factorial(2) = 2 * factorial(1) = 2 * 1 = 2 
factorial(3) = 3 * factorial(2) = 3 * 2 = 6 

Example: factorial(3) 

 Let us consider the invocation of 
factorial(3). 

 To compute 3 * factorial(2) in the else 
statement, the computation of 
factorial(3) is suspended and factorial 
is invoked with n = 2. 

 When computation of factorial(3) is 
suspended then the program state (i.e. 
local variables, program counter etc.) 
are pushed on recursion stack. 

 Similarly invocation of factorial(2) is 
suspended, factorial is invoked with n 
= 1. 

 factorial(1) returns 1, program state 
of factorial(2) is then popped off the 
stack to compute factorial(2). 

 

factorial(3): 
n=3 

factorial(2): 
n=2 

stack 



Recursion vs. Iteration 

 Usually slower, due to 
overhead of stack 
manipulation and function 
calls. 

 Has the risk of stack 
overflow, for too many 
function calls. 

 Some problems can be more 
easily solved by recursion. 

 Runs faster as 
assignments are 
usually less costly 
than function calls. 

Recursion Iteration 
unsigned int factorial(unsigned int n) { 
 if (n <= 1) return 1; 
 else return n * factorial(n – 1); 
} 

unsigned int factorial(unsigned int n) { 
 unsigned int result = 1; 
 while (n > 1) { 
  result *= n--; 
 } 
 return result; 
} 



Tail Recursion 

 tail recursion (or tail-end recursion) is a special 
case of recursion in which the last operation of the 
function, i.e. the tail call, is the recursive call.  

 In other words there are no more operations after 
the function calls itself. 

 Such recursions can be easily transformed to 
iterations.  

 Replacing recursion with iteration, can drastically 
decrease the amount of stack space used and 
improve program efficiency. 



Tail Recursion: Example 

unsigned int factorial(unsigned int n) { 
 return tailFactorial(1, n); 
}  
 
unsigned int tailFactorial(unsigned int result, unsigned int n) { 
 if (n <= 1) return result; 
 else return tailFactorial(n * result, n - 1); 
} 



Tail Recursion & Iteration 

Let us trace the execution of this 
program to calculate factorial(3): 
 
factorial(3) 
tailFactorial(result = 1, n = 3) 
tailFactorial(result = 3, n = 2) 
tailFactorial(result = 6, n = 1) 
return 6 

Look at how the variables change 
with each iteration while 
calculating factorial(3): 
 
factorial(3) 
result = 1, n = 3 
result = 3, n = 2 
result = 6, n = 1 
return 6 

Tail Recursion Iteration 
unsigned int factorial(unsigned int n) { 
 return tailFactorial(1, n); 
}  
 
unsigned int tailFactorial(unsigned int result, unsigned int n) { 
 if (n <= 1) return result; 
 else return tailFactorial(n * result, n – 1); 
} 

unsigned int factorial(unsigned int n) { 
 unsigned int result = 1; 
 while (n > 1) { 
  result *= n--; 
 } 
 return result; 
} 



Tail Recursion & Iteration 

 As we can see the variables result and n are 
identical for iterative and tail-recursive methods. 

 Hence tail recursion and iteration are equivalent. 
 Thus a recursive algorithm can be converted to a 

tail recursive algorithm. 
 A tail recursive algorithm can in-turn be 

converted to a iterative algorithm. 



Tower of Hanoi 

 It is a mathematical game, which consists of three 
towers, and a number of disks of different sizes which 
can slide onto any tower. The puzzle starts with the 
disks in a neat stack in ascending order of size on one 
tower, the smallest at the top, thus making a conical 
shape. 

 The objective of the puzzle is to move the entire stack 
to another tower, obeying the following rules: 
 Only one disk may be moved at a time. 
 Each move consists of taking the upper disk from one of 

the towers and sliding it onto another tower, on top of the 
other disks that may already be present on that tower. 

 No disk may be placed on top of a smaller disk. 



Recursive Solution 

 A key to solving this puzzle is to recognize that it can be solved 
by breaking the problem down into a collection of smaller 
problems and further breaking those problems down into even 
smaller problems until a solution is reached. The following 
procedure demonstrates this approach. 

1. label the towers A, B, C—these labels may move at different steps 

2. let n be the total number of  disks 

3. number the disks from 1 (smallest, topmost) to n (largest, 
bottommost) 

4. To move n disks from tower A to tower C: 

5. move n−1 disks from A to B. This leaves disc #n alone on tower A 

6. move disk #n from A to C 

7. move n−1 disks from B to C so they sit on disk #n 

 The above is a recursive algorithm. 

http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Recursion


A B C 

Initial Step 1: Move disk1 from A to C 

A B C 

Step 2: Move disk2 from A to B 

A B C 

Step 3: Move disk1 from C to B 

A B C 

Step 4: Move disk3 from A to C 

A B C 

Step 5: Move disk1 from B to A 

A B C 

Step 6: Move disk2 from B to C 

A B C 

Step 7: Move disk1 from A to C 

A B C 



Recursive Algorithm 

void dohanoi(int N, int from, int to, int via)  
{  

if (N > 0)  
{  

dohanoi(N-1, from, via, to);  
printf ("move %d --> %d\n", from, to);  
dohanoi(N-1, via, to, from);  

}  
}  



Recurrence Relations 

 Let T(n) be the number of moves needed to solve 
the puzzle with n disks. 

 The recursive solution involves moving n – 1 disks 
from one tower to another twice, making one 
additional move in between. 

 Thus it follows that: 
 T(n) = T(n – 1) + 1 + T(n – 1) = 2T(n – 1) + 1 
 Intuitively, T(1) = 1 
 The equation above is called a recurrence relation. 

 



nth order linear recurrence 
relations 

 Consider the following equation: 
S(k) = c1S(k – 1) + c2S(k – 2) + … + cnS(k – n) + f(n) 
Where c1, c2, …, cn are numbers and f is a numeric 
function. 

 Such an equation is called an nth order linear 
recurrence relation, if cn ≠ 0 

 For example: 
 Fi – Fi-1 – Fi-2 = 0    … order 2 
 P(j) + 2P(j – 3) = j2   … order 3 

 a(n) = 2(a(n – 1) + n))   … order 1 
 



Homogeneous recurrence relations 

 Consider the following equation: 
S(n) = c1S(n – 1) + c2S(n – 2) + … + cnS(n – n) + f(n) 

 If f(n) = 0, for all n, then this equation is called a 
homogeneous recurrence relation. 

 For example, say: 
𝑆 𝑘 − 7𝑆 𝑘 − 1 + 12𝑆 𝑘 − 2 = 0, 𝑆 0 = 𝑆 1 = 4 … (i) 

𝐿𝑒𝑡 𝑆 𝑘 = 𝑏. 𝑎𝑘 be the solution, where a, b are non-zero constants 
𝑇𝑕𝑒𝑛 𝑆 𝑘 − 1 = 𝑏. 𝑎𝑘−1, 𝑆 𝑘 − 2 = 𝑏. 𝑎𝑘−2 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 (𝑖), 𝑏. 𝑎𝑘-7 𝑏. 𝑎𝑘−1 + 12𝑏. 𝑎𝑘−2 = 0 

Dividing by  𝑏. 𝑎𝑘−2, 𝑎2 − 7𝑎 + 12 = 0 … (ii) 

This equation is called the characteristic equation of the recurrence. 

Solving (ii) yields, (a - 3)(a – 4) = 0 

Thus the general solution is : S(k) = 𝑏1. 3𝑘 + 𝑏2. 4𝑘 

Using the initial conditions, S(0) = S(1) = 4, we get b1 = 12, b2 = -8 

Thus, S(k) = 12.3k – 8.4k 

 



Algorithm for solving 
homogeneous recurrences 

1. Write the characteristic equation of the 
recurrence Consider the following equation: 
S(k) + c1S(k – 1) + c2S(k – 2) + … + cnS(k – n) = 0 
Which is: an + c1an-1 + … + cn = 0 

2. Find all the roots of the characteristic equation. 
3. If there are n characteristic roots a1, …, an then 

general solution is  
S(n) = b1.a1

k + b2.a2
k + … + bn.an

k 

 



Algorithm for solving 
homogeneous recurrences 

4. If there are fewer than n characteristic roots then 
at least one root is a multiple root. If aj is a double 
root then bjaj

k is replaced by (bj0 + bj1k).aj
k 

5. In general, if aj is a root of multiplicity p, then 
bjaj

n is replaced by (bj0 + bj1n + … + bj(p-1).kp-1).aj
k 

6. If n initial conditions are given then form n linear 
equations and solve. 

 



Solving homogeneous recurrences 

f 𝑛 = 𝑓 𝑛 − 1 + 8𝑓 𝑛 − 2 − 12𝑓 𝑛 − 3  … (𝑖) 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠:  𝑓 0 = 0, 𝑓 1 = 1, 𝑓 2 = 3  

 

We have f(n) – f(n - 1) -8f(n – 2) + 12f(n – 3) = 0 

The characteristic equation of this recurrence relation is: 

a3 – a2 - 8a + 12 = 0 … (ii) 

 

Solving (ii) we get, (a – 2)2.(a + 3) = 0 

Thus the characteristic roots are: a =2, a = 2, a = -3 … (iii) 

 

Since a = 2 is a characteristic root with multiplicity 2, we write 

f(n) = (bo + b1.n).2n + b2(-3)n 

Applying the initial conditions, we can get the values of b0, b1 & b2 



Non-homogeneous recurrence 
relations 

 Consider the following equation: 
S(k) + c1S(k – 1) + c2S(k – 2) + … + cnS(k – n) = f(n) 

 If f(n) ≠ 0, for all n, then this equation is called 
a non-homogeneous recurrence relation. 

 For example, T(n) = 2T(n – 1) + 1 
 



Algorithm for solving non-
homogeneous recurrences 

1. Write the associated homogeneous equation by 
putting the RHS, i.e. f(n) = 0, solve this using 
previous algorithm. Call this the homogeneous 
solution. 

2. Obtain the particular solution by taking a 
guess by the form of RHS, i.e. f(n). 

 
 
 

f(n) Particular Solution 
Constant q Constant d 
Linear equation q0 + q1k d0 + d1k 
q.ak d.ak 



Algorithm for solving non-
homogeneous recurrences 

4. If RHS involves an exponential with base a, 
where a is a characteristic root with 
multiplicity p, then multiply particular 
solution by kp, where k is the index of 
recurrence. 

5. Substitute your guess into the recurrence 
relation. 

6. Sum up the homogeneous solution and the 
particular solution to get the general solution. 

7. Use initial conditions to evaluate constants. 



Solving non-homogeneous 
recurrences 

f 𝑘 + 5𝑓 𝑘 − 1 = 9 … (𝑖), initial condition f(0) = 6 

 

Now, the homogeneous characteristic equation is: a+ 5 = 0, So, a = -5 

Thus the homogeneous solution is: f(k) = b(-5)k … (ii) 

 

Since f(n) = 9, we guess that the particular solution is d. 

Substituting in (i), d + 5d  = 9, i.e. d = 3/2 … (iii) 

 

Using (ii) + (iii) as the general solution we get 

f(k) = b(-5)k + 3/2 

By initial conditions: 6 = b + 3/2, i.e. b = 9/2 

 

Hence, f(k) = 9/2(-5)k + 3/2 

 

 

 

 



Solving non-homogeneous 
recurrences 

f 𝑘  − 9𝑓 𝑘 − 1 + 20𝑓(𝑘 − 2) = 2. 5𝑘  … (𝑖), initial condition f(0) = 1, f(1) = 60 

 

Now, the homogeneous characteristic equation is: 

a2 – 9a + 20 = 0, i.e. characteristic roots are a = 4, 5 

Thus the homogeneous solution is: f(k) = b0(4)k + b1(5)k… (ii) 

 

Since f(n) = 2. 5𝑘, we guess that the particular solution is d.5𝑘 

But since 5 is a characteristic root with multiplicity 1, we multiply the particular 
solution by n, thus getting dk. 5𝑘 

Substituting in (i), dk. 5𝑘  − 9d(k - 1). 5𝑘−1 + 20d(k − 2). 5𝑘−2= 2. 5𝑘  

So, d = 10, and particular solution is 10k. 5𝑘 … (iii) 

 

Using (ii) + (iii) as the general solution, we get 

f(k) = b0(4)k + b1(5)k + 10k. 5𝑘  

Apply initial conditions to solve for b0 & b1 

 

 

 

 



Solving the Tower-of-Hanoi 
recurrence relation 

T 𝑛 = 2𝑇 𝑛 − 1 + 1 … (𝑖), initial condition T(1) = 1 

 

Now, the homogeneous characteristic equation is: 

a – 2 = 0, i.e. a = 2 

Thus the homogeneous solution is: T(n) = b(2)n  … (ii) 

 

Since RHS = 1, we guess that the particular solution is d. 

Substituting in (i), d  - 2d  = 1, i.e. d = -1 … (iii) 

 

Using (ii) + (iii) as the general solution, we get 

T(n) = b(2)n  - 1 

By initial conditions: b=1  

 

Hence, T(n) = 2n  - 1 

Remember that we needed 7 steps for 3 disks, which matches with our solution since 
23  - 1 = 7. 

 
 

 

 

 

 



Recursion: Binary Search 

bool bsearch(int a[ ], int first, int last, int key) 
{ 
 if (key < a[first] || key > a[last]) return false;  // not found 
 int mid = (first + last) / 2; 
 if (a[mid] > key) return bsearch(a, first, mid - 1, key); 
 else if (a[mid] < key) return bsearch(a, mid + 1, last, key); 
 else return true;  // a[mid] == key 
} 

How to find the running time of such an algorithm? 



Recursion: Binary Search 

bool bsearch(int a[ ], int first, int last, int key) 
{ 
 if (key < a[first] || key > a[last]) return false;  // not found 
 int mid = (first + last) / 2; 
 if (a[mid] > key) return bsearch(a, first, mid - 1, key); 
 else if (a[mid] < key) return bsearch(a, mid + 1, last, key); 
 else return true;  // a[mid] == key 
} 

•Let T(n) be the time taken for input size n 

•At each stage the algorithm divides the list of  numbers in 2 halves 

•Then it tries to find the key in the half  it is likely to be present, by using 

binary search on that half 

•T(n/2) would be the time taken for any of  the halves 

•Finding the value of  the mid (first + last) / 2 would take O(1) time 

•Hence, T(n) = T(n/2) + 1 



Recursion 

 We observed that the running time of the binary 
search algorithm can be expressed by the 
recurrence relation: 

T(n) = T(n/2) + 1 

 A more generic form of this equation is: 
T(n) = a.T(n/b) + f(n),  a>=1, b>1 

 This form of recurrence relation is observed in 
many recursive algorithms 



Recursion 

 T(n) = a.T(n/b) + f(n),  a>=1, b>1 
 In the analysis of a recursive algorithm, the 

constants and function take the following 
significance: 
 n = size of the problem 
 a = number of sub-problems in the recursion 
 n/b = size of each sub-problem 
 f(n) = cost of work done outside recursive calls 
Observe the recurrence relation of  binary search: 

T(n) = T(n/2) + 1 
 



Recursion: Master Theorem 

 T(n) = a.T(n/b) + f(n),  a>=1, b>1 

 T(n) can be bounded as follows: 

1 

• If f(n) = O(nlog
b

(a) – ε), ε > 0 
• Then, T(n) = Θ(nlog

b
(a)) 

2 

• If f(n) = Θ(nlog
b

(a) ) 
• Then, T(n) = Θ(nlog

b
(a).lg(n)) 

3 

• If f(n) = Ω(nlog
b

(a) + ε), ε>0 
• And a.f(n/b) <= c.f(n), c<1 
• Then, T(n) = Θ(f(n)) 



Recursion: T(n) = a.T(n/b) + f(n) 

 In each of the cases we are comparing f(n) 
with nlog

b
(a) 

 

1 
• f(n) = O(nlog

b
(a) – ε), ε>0 

 f(n) is polynomially smaller than nlog
b
(a) by 

a factor ε>0 
 Then, T(n) = Θ(nlog

b
(a)) 

 
 
 



Recursion: T(n) = a.T(n/b) + f(n) 

 In each of the cases we are comparing f(n) 
with nlog

b
(a) 

 

3 
• If f(n) = Ω(nlog

b
(a) + ε), ε>0 and 

a.f(n/b) <= c.f(n), c<1 

 f(n) is polynomially larger than nlog
b
(a) by a 

factor ε>0 
 Then, T(n) = Θ(f(n)) 

 
 
 



Recursion: T(n) = a.T(n/b) + f(n) 

 In each of the cases we are comparing f(n) 
with nlog

b
(a) 

 

2 
• If f(n) = Θ(nlog

b
(a) ) 

 f(n) and nlog
b
(a) are of the same size,  

 Then, T(n) = Θ(nlog
b
(a).lg(n)) 

[multiply by a logarithmic factor lg(n) ] 

 

 

 



Recursion: Applying Master 
Method 

T(n) = 8T(n/2) + 100n2 

We have a = 8, b = 2 

logb(a) = 3 

nlogb(a) = n3 

f(n) = 100n2 = O(n2)  = O(n3-1) 

Hence, f(n) = O(nlogb(a) – ε), ε=1 

By, case 1 of Master Method 

T(n) = Θ(n3) 

 



Recursion: Applying Master 
Method 

T(n) = 2T(n/2) + 10n 

We have a = 2, b = 2 

logb(a) = 1 

nlogb(a) = n1 

f(n) = 10n = Θ(n) 

Hence, by case 2 of Master Method 

T(n) = Θ(n.lg(n)) 

 



Recursion: Applying Master 
Method 

T(n) = 2T(n/2) + n2 

We have a = 2, b = 2 
logb(a) = 1 
 
nlogb(a)

 = n1 

f(n) = n2  = n1+1 

So, f(n) = Ω(nlogb(a) + ε), ε=1 
a.f(n/b) = 2f(n/2)  = 2. (n2 / 4) 
   = n2 / 2 <= c.f(n), c=1/2 
Hence, by case 3 of Master Method 
T(n) = Θ(n2) 
 



Recursion: Applying Master 
Method 

 T(n) = 2T(√n) + 1 

 

Can we solve this recurrence by applying  
the master method? 

Solution:  Re-arrange the variables 



Recursion: Applying Master 
Method 

T(n) = 2T(√n) + 1 

Let m = lg(n), i.e. n = 2m 

T(2m) = 2T(2m/2) + 1 
Let T(2m) = S(m) 
Then we can re-write the recurrence as: 
S(m) = 2S(m/2) + 1 
mlog

b
(a) = m 

f(m) = 1= O(m1-1) 
Hence, f(m) = O(mlog

b
(a) – ε), ε=1 

By, case 1 of Master Method 
S(m) = Θ(m) 
Therefore, T(n) = Θ(lg(n)) 



Recursion: Applying Master 
Method 

 For the binary search example: 

 We had, T(n) = T(n/2) + 1 

 Let us try to solve it using the master method 
 

In this case: a = 1, b = 2 
logb(a) = 0 
nlog

b
(a) = n0 = 1 

f(n) = 1 

       = Θ(nlog
b

(a)) 
Hence, by case 2 of Master Method 
T(n) = Θ(1.lg(n)) = Θ(lg(n)) 

 



Recursion: T(n) = a.T(n/b) + f(n) 

 The Master Method is not applicable if 

 f(n) is smaller than nlog
b
(a) but not polynomially 

smaller 

 Example: T(n) = 2T(n/2) + n/log(n) 

 f(n) is larger than nlog
b
(a) but not polynomially 

larger 

 Example: T(n) = 2T(n/2) + n*log(n) 

 

 




