
Divide & Conquer

Divide & Conquer

The Divide & Conquer approach breaks down the
problem into multiple smaller sub-problems, solves
the sub-problems recursively, then combines the
solutions of the sub-problems to create a solution
for the original problem.
The steps involved are:

11. Divide the problem into number of sub-problems
2. Conquer the sub-problems by solving them recursively
3. Combine the solution of the sub-problems to solve the

original problem

Divide & Conquer : Merge Sort

We need to sort a list of n numbers.
The merge sort algorithm uses divide & conquer
strategy to solve this problem in the following way:
The steps involved are:

11. Divide the n element sequence into 2 sub-sequences of
n/2 elements each

2. Conquer sort the sub-sequences recursively
3. Combine merge the two sorted sub-sequences to form the

end result

Divide & Conquer: Merge Sort

void mergesort(int a[], int l, int r)
{
 if (l < r)
 {
 int m = (l + r) / 2; // divide
 mergesort(a, l, m); // conquer 1st sub-sequence
 mergesort(a, m+1, r); // conquer 2nd sub-sequence
 merge(a, l, m, r); // combine
 }
}

Divide & Conquer: Merge Sort

void merge(int a[], int l, int m, int r)
{
 int n1 = m - l + 1;
 int n2 = r - m;
 int L[n1 + 2]; // create arrays L & R
 int R[n2 + 2];
 for (int i = 1; i <= n1; i++)
 {
 L[i] = a[l + i - 1]; // initialize L with elements a[l] to a[m]
 }
 for (int j = 1; j <= n2; j++)
 {
 R[j] = a[m + j]; // initialize R with elements a[m+1] to a[r]
 }
 L[n1 + 1] = R[n2 + 1] = MAXINT; // #define MAXINT = 65536
 int p = 1;
 int q = 1;
 for (int k = l; k <= r; k++)
 a[k] = (L[p] <= R[q]) ? L[p++] : R[q++];
}

Divide & Conquer : Merge Sort

If a = {5, 12, 17, 6} Function calls are in the following order
mergesort(a, 1, 4)

mergesort(a, 1, 2)
mergesort(a, 1, 1)
mergesort(a, 2, 2)
merge(a, 1, 1, 2)
a = 5 12 17 6

mergesort(a, 3, 4)
mergesort(a, 3, 3)
mergesort(a, 4, 4)
merge(a, 3, 3, 4)
a = 5 12 6 17

merge(a, 1, 2, 4)
a = 5 6 12 17

a = 5 6 12 17

void mergesort(int a[], int l, int r)
{
 if (l < r)
 {
 int m = (l + r) / 2;
 mergesort(a, l, m);
 mergesort(a, m+1, r);
 merge(a, l, m, r);
 }
}

Divide & Conquer : Merge Sort
Analysis
Let T(n) be the running time for input size n
When n = 1, the problem can be solved in constant
time

T(n) = Θ(1), when n = 1
When n > 1 we divide the problem into 2 sub-
problems, each of size n/2, which contributes to
2T(n/2) running time
Merging an n elements takes Θ(n) time

T(n) = 2T(n/2) + Θ(n), when n > 1
To estimate the running time of merge sort for an n
element sequence we have to solve this recurrence

Divide & Conquer : Merge Sort
Analysis
T(n) = 2T(n/2) + Θ(n)
Is of the form T(n) = a.T(n/b) + f(n), a = 2 & b = 2
logb(a) = 1
nlogb(a) = n1 = n
f(n) = Θ(n) = Θ(nlogb(a))

Hence, by case 2 of the master method
TT(n) = Θ(n.lg(n))

Quick Sort

Quick sort, like merge sort is based on divide and
conquer technique for sorting an array a[l … r]
The steps involved are:

11. Divide the array a[l … r] is partitioned into two sub-
components a[l … p] and a[p + 1 … r], such that every
element of a[l … p] is less than equal to every element of
a[p + 1 … r]

2. Conquer The sub-arrays a[l … p] and a[p + 1 … r] are
sorted by recursive calls to quicksort

3. Combine Since the sub-arrays are sorted in place no
overhead of combining them is required

Quick Sort

void qsort(int a[], int l, int r)
{
 if (l < r)
 {
 int p = partition(a, l, r);
 qsort(a, l, p);
 qsort(a, p + 1, r);
 }
}

Quick Sort

int partition(int a[], int p, int q)
{
 int x = a[p];
 int i = p - 1;
 int j = q + 1;
 while (1) {
 do {
 i++;
 } while (a[i] < x);
 do {
 j--;
 } while (a[j] > x);
 if (i < j) swap(a[i], a[j]);
 else return j;
 }
}

6 9 5 2 4
i j

6 9 5 2 4
i j

4 9 5 2 6
i j

4 9 5 2 6
i j

4 2 5 9 6
i j

4 2 5 9 6
j i

Quick Sort: Worst Case Analysis

The worst case for quick sort is when partition function
produces one sub-array with (n – 1) elements and another
sub-array with 1 element. If this unbalanced partitioning
happens at very step of the algorithm we call it the worst
case quick sort behavior.
Since partitioning takes Θ(n) time and T(1) = Θ(1), the
recurrence for the worst case running time is
T(n) = T(n – 1) + Θ(n)

 = T(n – 2) + Θ(n - 1) + Θ(n)
 = …
 = T(1) + … + Θ(n - 1) + Θ(n)
 = Θ(1) + … + Θ(n - 1) + Θ(n)
 = Θ(1 + 2 + … + n)

 = Θ(n2)

Quick Sort: Best Case Analysis

The best case for quick sort is when partition
function produces two sub-arrays with (n/2)
elements each.
The recurrence is then
T(n) = 2T(n/2) + Θ(n)
By case 2 of the master method, the solution is:
T(n) = Θ(n.lg(n))

RECURSION

Recursive Functions

 A recursive function is one that manes a call to itself.
 For example:

 We can define factorial of a positive integer n, as
 Factorial(n) = 1, when n = 0, 1
 Factorial(n) = n * Factorial(n – 1), when n > 1

 Notice that we are calculating Factorial(n) in terms of
Factorial(n – 1).

 In other words, to find Factorial(5) we need to find
Factorial(4) and multiply the result by 5.

 To find Factorial(4), we need to find Factorial(3) and
multiply the result by 4, and so on.

Recursion Implementation

 A recursive factorial function loons line this:
unsigned int factorial(unsigned int n) {
 if (n <= 1) return 1;
 else return n * factorial(n – 1);
}

 Recursive functions calls are not executed
immediately.

 They are placed on a stack until the condition that
terminates recursion is encountered.

 The function calls are executed in reverse order,
as they are popped off the stack.

factorial(1) = 1

unsigned int factorial(unsigned int n) {
 if (n <= 1) return 1;
 else return n * factorial(n – 1);
}

factorial(2) = 2 * factorial(1) = 2 * 1 = 2
factorial(3) = 3 * factorial(2) = 3 * 2 = 6

Example: factorial(3)

 Let us consider the invocation of
factorial(3).

 To compute 3 * factorial(2) in the else
statement, the computation of
factorial(3) is suspended and factorial
is invoked with n = 2.

 When computation of factorial(3) is
suspended then the program state (i.e.
local variables, program counter etc.)
are pushed on recursion stack.

 Similarly invocation of factorial(2) is
suspended, factorial is invoked with n
= 1.

 factorial(1) returns 1, program state
of factorial(2) is then popped off the
stack to compute factorial(2).

factorial(3):
n=3

factorial(2):
n=2

stack

Recursion vs. Iteration

 Usually slower, due to
overhead of stack
manipulation and function
calls.

 Has the risk of stack
overflow, for too many
function calls.

 Some problems can be more
easily solved by recursion.

 Runs faster as
assignments are
usually less costly
than function calls.

Recursion Iteration
unsigned int factorial(unsigned int n) {
 if (n <= 1) return 1;
 else return n * factorial(n – 1);
}

unsigned int factorial(unsigned int n) {
 unsigned int result = 1;
 while (n > 1) {
 result *= n--;
 }
 return result;
}

Tail Recursion

 tail recursion (or tail-end recursion) is a special
case of recursion in which the last operation of the
function, i.e. the tail call, is the recursive call.

 In other words there are no more operations after
the function calls itself.

 Such recursions can be easily transformed to
iterations.

 Replacing recursion with iteration, can drastically
decrease the amount of stack space used and
improve program efficiency.

Tail Recursion: Example

unsigned int factorial(unsigned int n) {
 return tailFactorial(1, n);
}

unsigned int tailFactorial(unsigned int result, unsigned int n) {
 if (n <= 1) return result;
 else return tailFactorial(n * result, n - 1);
}

Tail Recursion & Iteration

Let us trace the execution of this
program to calculate factorial(3):

factorial(3)
tailFactorial(result = 1, n = 3)
tailFactorial(result = 3, n = 2)
tailFactorial(result = 6, n = 1)
return 6

Look at how the variables change
with each iteration while
calculating factorial(3):

factorial(3)
result = 1, n = 3
result = 3, n = 2
result = 6, n = 1
return 6

Tail Recursion Iteration
unsigned int factorial(unsigned int n) {
 return tailFactorial(1, n);
}

unsigned int tailFactorial(unsigned int result, unsigned int n) {
 if (n <= 1) return result;
 else return tailFactorial(n * result, n – 1);
}

unsigned int factorial(unsigned int n) {
 unsigned int result = 1;
 while (n > 1) {
 result *= n--;
 }
 return result;
}

Tail Recursion & Iteration

 As we can see the variables result and n are
identical for iterative and tail-recursive methods.

 Hence tail recursion and iteration are equivalent.
 Thus a recursive algorithm can be converted to a

tail recursive algorithm.
 A tail recursive algorithm can in-turn be

converted to a iterative algorithm.

Tower of Hanoi

 It is a mathematical game, which consists of three
towers, and a number of disks of different sizes which
can slide onto any tower. The puzzle starts with the
disks in a neat stack in ascending order of size on one
tower, the smallest at the top, thus making a conical
shape.

 The objective of the puzzle is to move the entire stack
to another tower, obeying the following rules:
 Only one disk may be moved at a time.
 Each move consists of taking the upper disk from one of

the towers and sliding it onto another tower, on top of the
other disks that may already be present on that tower.

 No disk may be placed on top of a smaller disk.

Recursive Solution

 A key to solving this puzzle is to recognize that it can be solved
by breaking the problem down into a collection of smaller
problems and further breaking those problems down into even
smaller problems until a solution is reached. The following
procedure demonstrates this approach.

1. label the towers A, B, C—these labels may move at different steps

2. let n be the total number of disks

3. number the disks from 1 (smallest, topmost) to n (largest,
bottommost)

4. To move n disks from tower A to tower C:

5. move n−1 disks from A to B. This leaves disc #n alone on tower A

6. move disk #n from A to C

7. move n−1 disks from B to C so they sit on disk #n

 The above is a recursive algorithm.

http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Recursion

A B C

Initial Step 1: Move disk1 from A to C

A B C

Step 2: Move disk2 from A to B

A B C

Step 3: Move disk1 from C to B

A B C

Step 4: Move disk3 from A to C

A B C

Step 5: Move disk1 from B to A

A B C

Step 6: Move disk2 from B to C

A B C

Step 7: Move disk1 from A to C

A B C

Recursive Algorithm

void dohanoi(int N, int from, int to, int via)
{

if (N > 0)
{

dohanoi(N-1, from, via, to);
printf ("move %d --> %d\n", from, to);
dohanoi(N-1, via, to, from);

}
}

Recurrence Relations

 Let T(n) be the number of moves needed to solve
the puzzle with n disks.

 The recursive solution involves moving n – 1 disks
from one tower to another twice, making one
additional move in between.

 Thus it follows that:
 T(n) = T(n – 1) + 1 + T(n – 1) = 2T(n – 1) + 1
 Intuitively, T(1) = 1
 The equation above is called a recurrence relation.

nth order linear recurrence
relations

 Consider the following equation:
S(k) = c1S(k – 1) + c2S(k – 2) + … + cnS(k – n) + f(n)
Where c1, c2, …, cn are numbers and f is a numeric
function.

 Such an equation is called an nth order linear
recurrence relation, if cn ≠ 0

 For example:
 Fi – Fi-1 – Fi-2 = 0 … order 2
 P(j) + 2P(j – 3) = j2 … order 3

 a(n) = 2(a(n – 1) + n)) … order 1

Homogeneous recurrence relations

 Consider the following equation:
S(n) = c1S(n – 1) + c2S(n – 2) + … + cnS(n – n) + f(n)

 If f(n) = 0, for all n, then this equation is called a
homogeneous recurrence relation.

 For example, say:
𝑆 𝑘 − 7𝑆 𝑘 − 1 + 12𝑆 𝑘 − 2 = 0, 𝑆 0 = 𝑆 1 = 4 … (i)

𝐿𝑒𝑡 𝑆 𝑘 = 𝑏. 𝑎𝑘 be the solution, where a, b are non-zero constants
𝑇𝑕𝑒𝑛 𝑆 𝑘 − 1 = 𝑏. 𝑎𝑘−1, 𝑆 𝑘 − 2 = 𝑏. 𝑎𝑘−2

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑖𝑛 (𝑖), 𝑏. 𝑎𝑘-7 𝑏. 𝑎𝑘−1 + 12𝑏. 𝑎𝑘−2 = 0

Dividing by 𝑏. 𝑎𝑘−2, 𝑎2 − 7𝑎 + 12 = 0 … (ii)

This equation is called the characteristic equation of the recurrence.

Solving (ii) yields, (a - 3)(a – 4) = 0

Thus the general solution is : S(k) = 𝑏1. 3𝑘 + 𝑏2. 4𝑘

Using the initial conditions, S(0) = S(1) = 4, we get b1 = 12, b2 = -8

Thus, S(k) = 12.3k – 8.4k

Algorithm for solving
homogeneous recurrences

1. Write the characteristic equation of the
recurrence Consider the following equation:
S(k) + c1S(k – 1) + c2S(k – 2) + … + cnS(k – n) = 0
Which is: an + c1an-1 + … + cn = 0

2. Find all the roots of the characteristic equation.
3. If there are n characteristic roots a1, …, an then

general solution is
S(n) = b1.a1

k + b2.a2
k + … + bn.an

k

Algorithm for solving
homogeneous recurrences

4. If there are fewer than n characteristic roots then
at least one root is a multiple root. If aj is a double
root then bjaj

k is replaced by (bj0 + bj1k).aj
k

5. In general, if aj is a root of multiplicity p, then
bjaj

n is replaced by (bj0 + bj1n + … + bj(p-1).kp-1).aj
k

6. If n initial conditions are given then form n linear
equations and solve.

Solving homogeneous recurrences

f 𝑛 = 𝑓 𝑛 − 1 + 8𝑓 𝑛 − 2 − 12𝑓 𝑛 − 3 … (𝑖)

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝑓 0 = 0, 𝑓 1 = 1, 𝑓 2 = 3

We have f(n) – f(n - 1) -8f(n – 2) + 12f(n – 3) = 0

The characteristic equation of this recurrence relation is:

a3 – a2 - 8a + 12 = 0 … (ii)

Solving (ii) we get, (a – 2)2.(a + 3) = 0

Thus the characteristic roots are: a =2, a = 2, a = -3 … (iii)

Since a = 2 is a characteristic root with multiplicity 2, we write

f(n) = (bo + b1.n).2n + b2(-3)n

Applying the initial conditions, we can get the values of b0, b1 & b2

Non-homogeneous recurrence
relations

 Consider the following equation:
S(k) + c1S(k – 1) + c2S(k – 2) + … + cnS(k – n) = f(n)

 If f(n) ≠ 0, for all n, then this equation is called
a non-homogeneous recurrence relation.

 For example, T(n) = 2T(n – 1) + 1

Algorithm for solving non-
homogeneous recurrences

1. Write the associated homogeneous equation by
putting the RHS, i.e. f(n) = 0, solve this using
previous algorithm. Call this the homogeneous
solution.

2. Obtain the particular solution by taking a
guess by the form of RHS, i.e. f(n).

f(n) Particular Solution
Constant q Constant d
Linear equation q0 + q1k d0 + d1k
q.ak d.ak

Algorithm for solving non-
homogeneous recurrences

4. If RHS involves an exponential with base a,
where a is a characteristic root with
multiplicity p, then multiply particular
solution by kp, where k is the index of
recurrence.

5. Substitute your guess into the recurrence
relation.

6. Sum up the homogeneous solution and the
particular solution to get the general solution.

7. Use initial conditions to evaluate constants.

Solving non-homogeneous
recurrences

f 𝑘 + 5𝑓 𝑘 − 1 = 9 … (𝑖), initial condition f(0) = 6

Now, the homogeneous characteristic equation is: a+ 5 = 0, So, a = -5

Thus the homogeneous solution is: f(k) = b(-5)k … (ii)

Since f(n) = 9, we guess that the particular solution is d.

Substituting in (i), d + 5d = 9, i.e. d = 3/2 … (iii)

Using (ii) + (iii) as the general solution we get

f(k) = b(-5)k + 3/2

By initial conditions: 6 = b + 3/2, i.e. b = 9/2

Hence, f(k) = 9/2(-5)k + 3/2

Solving non-homogeneous
recurrences

f 𝑘 − 9𝑓 𝑘 − 1 + 20𝑓(𝑘 − 2) = 2. 5𝑘 … (𝑖), initial condition f(0) = 1, f(1) = 60

Now, the homogeneous characteristic equation is:

a2 – 9a + 20 = 0, i.e. characteristic roots are a = 4, 5

Thus the homogeneous solution is: f(k) = b0(4)k + b1(5)k… (ii)

Since f(n) = 2. 5𝑘, we guess that the particular solution is d.5𝑘

But since 5 is a characteristic root with multiplicity 1, we multiply the particular
solution by n, thus getting dk. 5𝑘

Substituting in (i), dk. 5𝑘 − 9d(k - 1). 5𝑘−1 + 20d(k − 2). 5𝑘−2= 2. 5𝑘

So, d = 10, and particular solution is 10k. 5𝑘 … (iii)

Using (ii) + (iii) as the general solution, we get

f(k) = b0(4)k + b1(5)k + 10k. 5𝑘

Apply initial conditions to solve for b0 & b1

Solving the Tower-of-Hanoi
recurrence relation

T 𝑛 = 2𝑇 𝑛 − 1 + 1 … (𝑖), initial condition T(1) = 1

Now, the homogeneous characteristic equation is:

a – 2 = 0, i.e. a = 2

Thus the homogeneous solution is: T(n) = b(2)n … (ii)

Since RHS = 1, we guess that the particular solution is d.

Substituting in (i), d - 2d = 1, i.e. d = -1 … (iii)

Using (ii) + (iii) as the general solution, we get

T(n) = b(2)n - 1

By initial conditions: b=1

Hence, T(n) = 2n - 1

Remember that we needed 7 steps for 3 disks, which matches with our solution since
23 - 1 = 7.

Recursion: Binary Search

bool bsearch(int a[], int first, int last, int key)
{
 if (key < a[first] || key > a[last]) return false; // not found
 int mid = (first + last) / 2;
 if (a[mid] > key) return bsearch(a, first, mid - 1, key);
 else if (a[mid] < key) return bsearch(a, mid + 1, last, key);
 else return true; // a[mid] == key
}

How to find the running time of such an algorithm?

Recursion: Binary Search

bool bsearch(int a[], int first, int last, int key)
{
 if (key < a[first] || key > a[last]) return false; // not found
 int mid = (first + last) / 2;
 if (a[mid] > key) return bsearch(a, first, mid - 1, key);
 else if (a[mid] < key) return bsearch(a, mid + 1, last, key);
 else return true; // a[mid] == key
}

•Let T(n) be the time taken for input size n

•At each stage the algorithm divides the list of numbers in 2 halves

•Then it tries to find the key in the half it is likely to be present, by using

binary search on that half

•T(n/2) would be the time taken for any of the halves

•Finding the value of the mid (first + last) / 2 would take O(1) time

•Hence, T(n) = T(n/2) + 1

Recursion

 We observed that the running time of the binary
search algorithm can be expressed by the
recurrence relation:

T(n) = T(n/2) + 1

 A more generic form of this equation is:
T(n) = a.T(n/b) + f(n), a>=1, b>1

 This form of recurrence relation is observed in
many recursive algorithms

Recursion

 T(n) = a.T(n/b) + f(n), a>=1, b>1
 In the analysis of a recursive algorithm, the

constants and function take the following
significance:
 n = size of the problem
 a = number of sub-problems in the recursion
 n/b = size of each sub-problem
 f(n) = cost of work done outside recursive calls
Observe the recurrence relation of binary search:

T(n) = T(n/2) + 1

Recursion: Master Theorem

 T(n) = a.T(n/b) + f(n), a>=1, b>1

 T(n) can be bounded as follows:

1

• If f(n) = O(nlog
b

(a) – ε), ε > 0
• Then, T(n) = Θ(nlog

b
(a))

2

• If f(n) = Θ(nlog
b

(a))
• Then, T(n) = Θ(nlog

b
(a).lg(n))

3

• If f(n) = Ω(nlog
b

(a) + ε), ε>0
• And a.f(n/b) <= c.f(n), c<1
• Then, T(n) = Θ(f(n))

Recursion: T(n) = a.T(n/b) + f(n)

 In each of the cases we are comparing f(n)
with nlog

b
(a)

1
• f(n) = O(nlog

b
(a) – ε), ε>0

 f(n) is polynomially smaller than nlog
b
(a) by

a factor ε>0
 Then, T(n) = Θ(nlog

b
(a))

Recursion: T(n) = a.T(n/b) + f(n)

 In each of the cases we are comparing f(n)
with nlog

b
(a)

3
• If f(n) = Ω(nlog

b
(a) + ε), ε>0 and

a.f(n/b) <= c.f(n), c<1

 f(n) is polynomially larger than nlog
b
(a) by a

factor ε>0
 Then, T(n) = Θ(f(n))

Recursion: T(n) = a.T(n/b) + f(n)

 In each of the cases we are comparing f(n)
with nlog

b
(a)

2
• If f(n) = Θ(nlog

b
(a))

 f(n) and nlog
b
(a) are of the same size,

 Then, T(n) = Θ(nlog
b
(a).lg(n))

[multiply by a logarithmic factor lg(n)]

Recursion: Applying Master
Method

T(n) = 8T(n/2) + 100n2

We have a = 8, b = 2

logb(a) = 3

nlogb(a) = n3

f(n) = 100n2 = O(n2) = O(n3-1)

Hence, f(n) = O(nlogb(a) – ε), ε=1

By, case 1 of Master Method

T(n) = Θ(n3)

Recursion: Applying Master
Method

T(n) = 2T(n/2) + 10n

We have a = 2, b = 2

logb(a) = 1

nlogb(a) = n1

f(n) = 10n = Θ(n)

Hence, by case 2 of Master Method

T(n) = Θ(n.lg(n))

Recursion: Applying Master
Method

T(n) = 2T(n/2) + n2

We have a = 2, b = 2
logb(a) = 1

nlogb(a)

 = n1

f(n) = n2 = n1+1

So, f(n) = Ω(nlogb(a) + ε), ε=1
a.f(n/b) = 2f(n/2) = 2. (n2 / 4)
 = n2 / 2 <= c.f(n), c=1/2
Hence, by case 3 of Master Method
T(n) = Θ(n2)

Recursion: Applying Master
Method

 T(n) = 2T(√n) + 1

Can we solve this recurrence by applying
the master method?

Solution: Re-arrange the variables

Recursion: Applying Master
Method

T(n) = 2T(√n) + 1

Let m = lg(n), i.e. n = 2m

T(2m) = 2T(2m/2) + 1
Let T(2m) = S(m)
Then we can re-write the recurrence as:
S(m) = 2S(m/2) + 1
mlog

b
(a) = m

f(m) = 1= O(m1-1)
Hence, f(m) = O(mlog

b
(a) – ε), ε=1

By, case 1 of Master Method
S(m) = Θ(m)
Therefore, T(n) = Θ(lg(n))

Recursion: Applying Master
Method

 For the binary search example:

 We had, T(n) = T(n/2) + 1

 Let us try to solve it using the master method

In this case: a = 1, b = 2
logb(a) = 0
nlog

b
(a) = n0 = 1

f(n) = 1

 = Θ(nlog
b

(a))
Hence, by case 2 of Master Method
T(n) = Θ(1.lg(n)) = Θ(lg(n))

Recursion: T(n) = a.T(n/b) + f(n)

 The Master Method is not applicable if

 f(n) is smaller than nlog
b
(a) but not polynomially

smaller

 Example: T(n) = 2T(n/2) + n/log(n)

 f(n) is larger than nlog
b
(a) but not polynomially

larger

 Example: T(n) = 2T(n/2) + n*log(n)

