e

“/

f”‘/
/
WF

P
P |

A
/ _

PLAN¢ ‘ /

/ ‘}Y *:L-iﬁra NSTOCK

icon
‘ r
L'ég{L Toe e (ST
e UOE SUIdriesiy

Backtracking

Dr. Tamal Chakraborty

Rat In A Maze

QZ’M%UTBS

Sear

"This place is hard to find . . . but you'll
see . . . it's A-MAZE-ING!"

Rat In A Maze

Start here « left
\2) down
) - right

T up

Cheese heve

Rat In A Maze

— left

down

l
- right
T up

Dead End:
Move backward
until we reach a
square from
which a forward
move 1s possible.

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

— left

down

l
- right
T up

Dead End:
Move backward
until we reach a
square from
which a forward
move 1s possible.

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

— left

down

l
- right
T up

Dead End:
Move backward
until we reach a
square from
which a forward
move 1s possible.

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

«— left
\) down
- right
T up

Rat In A Maze

« left
3 down
— right
T up

Backtracking

dead end
? 4//v
/ Q dead end
/ / dead end
start. ——» ? ——» ? 4//v %dead end
dead end
\ A//v

.

success!

The n Queens Problem

We have an 8x8 chessboard, our job is
to place eight queens on the chessboard, . .
so that no two of them can attack. That
1s, no two of them are in the same row,
column or diagonal.

Queens problem is the n Queens
problem, where n 1s a positive integet.

Backtracking to solve the 4-queens problem

Backtracking to solve the 4-queens problem

W

Place Queenl at rowl

Backtracking to solve the 4-queens problem

Place Queen?2 at row?2

Backtracking to solve the 4-queens problem

Dead End: can’t place Queen3

Backtracking to solve the 4-queens problem

Backtrack and alter Queen?2

Backtracking to solve the 4-queens problem

Place Queen3 at row3

Backtracking to solve the 4-queens problem

Dead End: can’t place Queen4

Backtracking to solve the 4-queens problem

Can’t alter Queen3 or Queen2

Backtracking to solve the 4-queens problem

Backtrack and alter Queenl

Backtracking to solve the 4-queens problem

Place Queen?2 at row?2

Backtracking to solve the 4-queens problem

Place Queen3 at row3

Backtracking to solve the 4-queens problem

Place Queen4 at row4

Detecting a column attack

Think of the chessboard as a matrix of n
rows and n columns.

Say, Queenl is at position(r;, ¢,)
and, Queen? is at position(r,, ¢,)

Under what condition does Queenl
attack Queen2 along the same column?

Cq — = CH

Note that we need not check for the row equality because by our
backtracking strategy we are only placing one queen per row. Hence
there 1s no chance of two queens being in the same row.

Detecting a diagonal attack

Now, say Queenlis at (1, ¢)) : e.g. (4, 2)
It can be attacked by Queen?2 at (t,, ¢,) along two diagonals

a) Along the diagonal going from bottom-left to top-right
* DPossible positions of Queen2 are (5, 1), (3, 3),

2,4, 1,5).
. In all the cases we observe that
° r, tc==1,1tc,
* ler -1,==¢,-¢ (V)

b) Along the diagonal going from top-left to bottom-right
. Possible positions of Queen2 are (3, 1), (5, 3),
6, 4), (7, 5), (8, 6).

. In all the cases we observe that

Combining (1) & (i) we get the

. __ condition for diagonal attack as
-G =—=15-G

* def;-f,==c¢ -c, ... (i) abs(t; -t,) == abs(c, -¢,)

Representing the solution

n Queens on an n x n chessboard can be
represented by a one dimensional array q[l ... n],
where

The index j represents the row of the Queen
The corresponding value q[j] represents the
column of the Queen

e.g. q[4] = 2 means queen at row 4 is at column 2,
q[2] = 6 means queen at row 2 is at column 6.

This chessboarol
(S represemtw(b@ this arvay

Placing a Queen

Let’s write an algorithm, which will place a Queen at position (r,, c,) in the chessboard.
place(r,, c,)

Our algorithm should return true, if the Queen can be placed at (r,, c,) and false otherwise

Now, a Queen is being placed at (r,, c,) :- what information does it give us?

Hint: recall the backtracking strategy.

Remember how we solved the 4-Queens problem? We tried to place the first Queen in rowl,
then the second Queen in row?2 and then the third Queen at row3 and so on...

In other words, we only tried to place a Queen in a row if and only if we were able to place
Queens 1n all the previous rows.

So if we are trying to place a Queen at (r,, c,), then it must mean that we have successtully
placed Queens in all previous rows, 1.e. 1, 2, ..., r, — 1 already.

Then our job 1s to simply check if any of those (previously placed r, — 1) Queens attack the
Queen to be placed at (r,, ¢c,) along a column or along a diagonal

Placing a Queen

place(r,, c,)
// for all queens in the previous rows
// Lf (the new Queen at (v, ¢,) attacks along a colummn or a diagonal)
// This Queen can't be placed at (v, c.)
// otherwise (v, ¢,) Ls a good position to place the Rueen
1. for (r;, =1 to r, - 1)
/7 columm of the Queen at vow v, Ls

2. c, = qglr,]
3. if (¢, == ¢, OR abs(r;, - r,) == abs(c; — ¢c,))
4. return false

// slnee we ave out of the for Loop this wmust be a valid place

5. return true

The n-Queens Algorithm

place(r,, c,)
l. for (r, =1 to r, — 1)

2 c, = gqlrq]

3. if (¢; == ¢, OR abs(r; — r,) == abs(c; - c,))
4 return false

5. return true

nQueens (r)

1. for (¢ = 1 to n)

2 if (place(r, c))

3. glr] = ¢

4 if (r == n) displayQueens ()
5 else nQueens(r + 1)

Happy Backtracking

Thank You!

It's a Jungle out there!

by HAGEN

The first couple of times, it was fun,
but like you, I'm starting to get tired

of having to negotiate a maze whenever I'm hungry...
Hagen Cartoons: http-//www. hogencartoons.com

