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Rat In A Maze
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square from 
which a forward 
move is possible.
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Backtracking
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The n Queens Problem

We have an 8x8 chessboard, our job is

to place eight queens on the chessboard,

so that no two of them can attack. That

is, no two of them are in the same row,

column or diagonal.

The generalized version of the 8

Queens problem is the n Queens

problem, where n is a positive integer.
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Backtracking to solve the 4-queens problem



Backtracking to solve the 4-queens problem

♕

Place Queen1 at row1



Backtracking to solve the 4-queens problem
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Place Queen2 at row2



Backtracking to solve the 4-queens problem
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Dead End: can’t place Queen3



Backtracking to solve the 4-queens problem
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Backtrack and alter Queen2
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Backtracking to solve the 4-queens problem
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Backtracking to solve the 4-queens problem
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Backtracking to solve the 4-queens problem

♕

Backtrack and alter Queen1



Backtracking to solve the 4-queens problem
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Backtracking to solve the 4-queens problem

♕

   ♕

♕

  ♕

Place Queen4 at row4
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Detecting a column attack

Think of the chessboard as a matrix of n

rows and n columns.

Say, Queen1 is at position(r1, c1)

and, Queen2 is at position(r2, c2)

Under what condition does Queen1

attack Queen2 along the same column?

c1 == c2

Note that we need not check for the row equality because by our

backtracking strategy we are only placing one queen per row. Hence

there is no chance of two queens being in the same row.
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Detecting a diagonal attack

Now, say Queen1 is at (r1, c1) : e.g. (4, 2)

It can be attacked by Queen2 at (r2, c2) along two diagonals

a) Along the diagonal going from bottom-left to top-right

• Possible positions of Queen2 are (5, 1), (3, 3),

(2, 4), (1, 5).

• In all the cases we observe that

• r1 + c1 == r2 + c2

• i.e. r1 - r2 == c2 - c1 … (i)

b) Along the diagonal going from top-left to bottom-right

• Possible positions of Queen2 are (3, 1), (5, 3),

(6, 4), (7, 5), (8, 6).

• In all the cases we observe that

• r1 - c1 == r2 - c2

• i.e. r1 - r2 == c1 - c2 … (ii)

Combining (i) & (ii) we get the

condition for diagonal attack as

abs(r1  - r2 ) == abs(c1  - c2 )



Representing the solution

n Queens on an n x n chessboard can be

represented by a one dimensional array q[1 … n],

where

The index j represents the row of the Queen

The corresponding value q[j] represents the

column of the Queen

e.g. q[4] = 2 means queen at row 4 is at column 2,

q[2] = 6 means queen at row 2 is at column 6.

1 2 3 4 5 6 7 8

q 4 6 8 2 7 1 3 5

This chessboard
Is represented by this array
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Placing a Queen
• Let’s write an algorithm, which will place a Queen at position (r2, c2) in the chessboard.

place(r2, c2)

• Our algorithm should return true, if  the Queen can be placed at (r2, c2) and false otherwise

• Now, a Queen is being placed at (r2, c2) :- what information does it give us?

• Hint: recall the backtracking strategy.

• Remember how we solved the 4-Queens problem? We tried to place the first Queen in row1, 

then the second Queen in row2 and then the third Queen at row3 and so on…

• In other words, we only tried to place a Queen in a row if  and only if  we were able to place 

Queens in all the previous rows.

• So if  we are trying to place a Queen at (r2, c2), then it must mean that we have successfully 

placed Queens in all previous rows, i.e. 1, 2, …, r2 – 1 already.

• Then our job is to simply check if  any of  those (previously placed r2 – 1) Queens attack the 

Queen to be placed at (r2, c2) along a column or along a diagonal



Placing a Queen

place(r2, c2)

// for all queens in the previous rows

// if (the new Queen at (r2, c2) attacks along a column or a diagonal)

// This Queen can’t be placed at (r2, c2)

// otherwise (r2, c2) is a good position to place the Queen

1. for (r1 = 1 to r2 – 1)

// column of the Queen at row r1 is

2. c1 = q[r1]

3. if (c1 == c2 OR abs(r1 – r2) == abs(c1 – c2))

4. return false

// since we are out of the for loop this must be a valid place

5. return true



The n-Queens Algorithm

place(r2, c2)

1. for (r1 = 1 to r2 – 1)

2. c1 = q[r1]

3. if (c1 == c2 OR abs(r1 – r2) == abs(c1 – c2))

4. return false

5. return true

nQueens(r)

1. for (c = 1 to n)

2. if (place(r, c))

3. q[r] = c

4. if (r == n) displayQueens()

5. else nQueens(r + 1)



Happy Backtracking
Thank You!


