
Branch & Bound
Dr. Tamal Chakraborty

U.S. Political cartoon about finding a

Republican presidential candidate in

1880

Lost in a street corner

1. Organize the solution space as a tree.

2. Systematically explore all the branches one by one

(perform BFS).

3. Associate a cost with each branch and choose the

branch with the lowest bound of the cost.

4. Discard (prune) those branches which won’t lead

to the solution.

Branch and Bound

The 15 Puzzle Problem

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Initial State Goal State

Legal Moves

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 4

5 6 3 8

9 10 7 11

13 14 15 12

L
R D U

Distance
from

initial state

Distance
from goal

state

Cost of a
state

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Initial State Goal State

Distance From GOAL State = Number of tiles NOT in GOAL position

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 4

5 6 3 8

9 10 7 11

13 14 15 12

L
R D U

Cost = 1 + 4 = 5 Cost = 1 + 4 = 5 Cost = 1 + 2 = 3 Cost = 1 + 4 = 5

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 4

5 6 3 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 15 11

13 14 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

I

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

G

the state space is organized as a
tree. The children of each node x
represent the number of nodes
reachable from x by one legal move.

The Branch & Bound Algorithm for 15-puzzle

bnb15Puzzle(currentState)

1. while (currentState ≠ GOAL)

2. cost = ∞

3. for each (state S reachable from currentState by 1 legal move)

4. if (S ≠ currentState.parent)

5. S.distanceFromInitial = currentState.distanceFromInitial + 1

6. costOfState = S.distanceFromInitial + S.tilesNotInGOALpos()

7. if (costOfState < cost)

8. cost = costOfState

9. nextState = S

10. currentState = nextState

Can you solve this 15-puzzle problem?

in 1878 Sam

Loyd, America's

puzzle-expert,

"drove the whole

world crazy" with

his newly

"discovered" 14-

15 puzzle

(though some

accounts state

that, other

authorities

dispute this fact).

Sam Loyd claimed

from 1891 until his

death in 1911 that

he invented the

puzzle. Some later

interest was fuelled

by Loyd offering a

$1,000 prize for

anyone who could

provide a solution

for achieving a

particular

combination

specified by Loyd,

namely reversing

the 14 and 15.

How to check if a 15 Puzzle problem is solvable

1. Find the total number of inversions

12 1 10 2

7 11 4 14

5 9 15

8 13 6 3

An inversion is when a tile precedes
another tile with a lower number on it.
The goal state has zero inversions. For
example, if, in a 4 x 4 grid, number 12
is top left, then there will be 11
inversions from this tile, as numbers 1-
11 come after it. The table below gives
the number of inversions for each tile in
the puzzle.

Tile 12 1 10 2 7 11 4 14 5 9 15 8 13 6 3

Nr. of inversions 11 0 8 0 4 6 1 6 1 3 4 2 2 1 0

the total number of inversions in this puzzle is 49.

How to check if a 15 Puzzle problem is solvable

2. Find the row number of the empty slot from bottom 12 1 10 2

7 11 4 14

5 9 15

8 13 6 3

We count the bottom-most row as row 1, and the top-
most row as row 4. With this convention we note the
row number of the empty slot is 2 in this game.

Total number of inversions is 49 (odd).

Empty slot is at row 2 (even).

This puzzle is solvable!!!

A 15-puzzle problem
is solvable if

The total number of inversions is odd

and the empty slot is in an even row

The total number of inversions is even

and the empty slot is in an odd row

or

Thank You!

