THEORY OF
COMPUTATION

Vivek Kulkarni

Slides for Faculty Assistance

OXFORD

THEORY OF
COMPUTATION

Vivek Kulkarni

@ Oxford University Press 2013. All rights reserved.

Chapter 3
(&

Regular Expressions

Author: Vivek Kulkarni

@ Oxford University Press 2013. All rights reserved.

mailto:vivek_Kulkarni@yahoo.com

Outline

a2 Following topics are covered in the slides:
@3 The concept of regular expressions (RE)
@3 Equivalence of regular expressions and finite automata
3 Construction of a DFA from the given regular expression

30btaining a regular expression for the language accepted by a
DFA

@3 Arden’s theorem

@3 Closure properties of regular languages (or sets)

8 Pumping lemma for regular languages

3 Applications of regular expressions / finite automata

@ Oxford University Press 2013. All rights reserved.

Regular Expression (RE)

c® The languages accepted by finite automata (FA) are described or
represented by simple expressions called regular expressions (RE).
Regular expressions, say r are like the short-form notations that denote
regular languages (or regular sets) say, L(7).

® The class of regular expressions over X is defined recursively as
follows:
@3 1. Regular expressions over %, include letters, ¢ (empty set), and € (empty
string of length zero).
@35 2. Every symbol a € X is a regular expression over 2.
3 3. If R1 and R2 are regular expressions over 2, then so are (R1 + R2), (R1 - R2),

and (R1)*, where ‘+" indicates alternation (parallel path), the operation .
denotes concatenation (series connection), and “*" denotes iteration (closure or

repetitive concatenation).
3 4. Regular expressions are only those that are obtained using rules 1-3.
@ Oxford University Press 2013. All rights reserved.

Regular Expression Examples

® Language consisting of all strings over 2 = {0, 1} with at least
two consecutive (’s can be denoted using RE as,

r=(0+1)*-0-0- (0 +1)*

arlf L(r) = set of all strings over ~ = {0, 1, 2}, such that at least one
0 is followed by at least one 1, which is followed by at least one 2
then,7r=0-0*-1-1*-2-2* or, r=0"-1*".2%

R The language over 2 = {0, 1} containing all possible combinations of 0’s

and 1’s but not having two consecutive ‘0’s can be represented using
RE as,

r=(0+e)- (1 +10)*

@ Oxford University Press 2013. All rights reserved.

Equivalence of Regular Expressions and
Finite Automata

2 Kleene’s theorem is stated in two parts:

Regular
Expression

NFA without
€ - moves

«rGiven a regular expression one can obtain an equivalent DFA
accepting the language represented by the regular expression.
The converse is true as well.

3 Any regular language is accepted by a
finite automaton.
@3 Languages accepted by FA are regular.

@ Oxford University Press 2013. All rights reserved.

Regular Expression to NFA with

e -moves Conversion

Rules for constructing NFA with € -moves from given
regular expression

O
=

O+1 = Parallel paths

0.1 SO_O,OL,O1_,O Series

. . c ’ﬁ c ’
0= () (U - Closure
c

@ Oxford University Press 2013. All rights reserved.

DFA to RE - Examples

d

r=(a+b) (a+b)
odP-os
1
59 0 o,1 r=1%00 (0+1)* + (1* 01)* 00 (0 + 1)*

1

0,1
@Q r=0+1)-[(0+1)-(0+T)]

@ Oxford University Press 2013. All rights reserved.

[terative method for obtaining RE from

DEA

R Let us consider any general DFA M, with Q5 {1, 2, 3,4, ..., n}.

c® Let us also use the label R® ., which represents a regular expression,
and whose language is the set of all strings w such that there is a path w
available from state i to state j in the transition graph for M. The only
restriction here is that the path does not traverse through any state,
whose number is greater than k.

R The expression R, when built through inductive definition, where we
start with k = 0 and incrementally build the expression till k = n. In this
way, we achieve all possible paths from i to j that traverse through all
the possible states available in M.

® For k = 0 there will be no intermediate state. Hence, for k = 0, we rely
only on the direct transitions that are available.

< When 1 and ; are initial and final states respectively and if k = n, then
R®; represents the RE equivalent to the DFA M.

@ Oxford University Press 2013. All rights reserved.

Arden’s Theorem

R If P, Q" and ‘R’ are regular expressions and,
@) If R =P + RQ or R = RQ + P then, R can be simplified as, R = PQ*
() f R=P+ QRor, R=QR + P then, R can be simplified as, R = Q* P

1 o)
«® For the example DFA,

()
(U
Qi gyl + €= 151"

$;=q0+q 0+1)=1"0+q, (0+1)=1*0(0+1)

As g, is the final state for the DFA, RE equivalent to the DFA is,
r=1*0(0+1)*

@ Oxford University Press 2013. All rights reserved.

Closure Properties of Regular Sets

>

crRegular languages - languages represented by
regular expressions are termed as Regular Sets.

ckRegular sets (or, regular languages) are closed under
the operations -
@sUnion: ‘R, + R,’ denotes all the strings that are either denoted
by ‘R, or ‘R,". Thus, L(R; + R,) = L(R;) U L(R,)
¢3Concatenation: ‘R, - R,” denotes all the strings that are
denoted by ‘R, concatenated with the strings denoted by ‘R5".

Thus, L(R - R,) = L(R,) - L(R,).
skleene closure: ‘R,*" denotes all the strings that are denoted

by ‘R’ concatenated to itself zero or more number of times.
us, L(R*) = L(R) - L(R) - L(R) - L(R) Zero or more
number of times.

@ Oxford University Press 2013. All rights reserved.

Pumping Lemma for Regular Languages

c® It states that given any sufficiently long string accepted by an FSM, we
can find a substring near the beginning of the string that may be
regeated (or pumped) as many times as we like and the resulting string
will still be accepted by the same FSM.

«® Formal Statement: Let ‘L’ be a regular set. Then there is a constant n’
such that if 'z’ is any word in “L” such that length of “z" is at least ‘'n” i.e.
|z| = n, then we can write z = uvw in such a way that,
@3 |uv| <n, that means, the substring near the beginning of the string
is not too long.
@3 |v| = 1, that means, v # €. Since, ‘v’ is the substring that gets
pumped.
@3 For all i > 0, u v w is in L. That means, the substring ‘v’ can be
pumped as many times as we like and the resultant string obtained
will be a member of ‘L.
«® Given a language, with the help of pumpin% lemma, we can determine
whether it is a regular language or non-regular language.

@ Oxford University Press 2013. All rights reserved.

Pumping Lemma - Example

>

R Prove that, the set L = {02 | iis an integer, i > 1} which consists of all strings
of ‘0’s whose length is a perfect square is NON-REGULAR.

c® Solution: The length of each string is a perfect square.
&3 Step 1: Let us assume that the language ‘L’ is a regular language. Let ‘'n’
be the constant of pumping lemma.

¢35 Step 2: Let us choose a sufficiently large string ‘z’ Let z = 0 for some
large | > 0 where length of 'z" is, |z| =1? > n. Since, we assumed that ‘L’
is a regular language and is an infinite language; pumping lemma can be
applied now. That means, we should be able to write ‘z" as, z = uvw.

3 Step 3: As per pumping lemma every string “uviw”, for all i 20 is in ‘L.
Also, | v | 21, that means ‘v’ cannot be empty and can contain one or
more symbols.

«® If we consider ‘v’ containing any number of ‘0’s and pumping it we will
get into the situation where we will have non-square length which will
not as per language definition.

@ Hence, language L = {0 | i 21} is non-regular.

@ Oxford University Press 2013. All rights reserved.

Applications of Regular Expression and |
Finite Automata

R Lexical analyzer

< Text Editors

@ Unix grep command
&R Many other ...

@ Oxford University Press 2013. All rights reserved.

